11,140 research outputs found

    Rubber friction: role of the flash temperature

    Full text link
    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 0.01 m/s the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v > 0.01 m/s. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g., for the tire-road friction, and in particular for ABS-breaking systems.Comment: 22 pages, 27 figure

    Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium

    Full text link
    Recent experimental developments of high-intensity, short-pulse XUV light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called "sequential" regime (photon energy above 54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow to induce and probe angular and energy correlations of the emitted electrons. The final momentum distribution reveals regions dominated by the Wannier ridge break-up scenario and by post-collision interaction.Comment: 4 pages, 5 figure

    A Note on Asymptotic Freedom at High Temperatures

    Get PDF
    This short note considers, within the external field approach outlined in hep-ph/0202026, the role of the lowest lying gluon Landau mode in QCD in the high temperature limit. Its influence on a temperature- and field-dependent running coupling constant is examined. The thermal imaginary part of the mode is temperature-independent in our approach and exactly cancels the well-known zero temperature imaginary part, thus rendering the Savvidy vacuum stable. Combining the real part of the mode with the contributions from the higher lying Landau modes and the vacuum contribution, a field-independent coupling alpha_s(T) is obtained. It can be interpreted as the ordinary zero temperature running coupling constant with average thermal momenta \approx 2pi T for gluons and \approx pi T for quarks.Comment: 4 pages; minor changes, version to appear in Phys. Rev.

    Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)

    Get PDF
    The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6−0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N = 1 ← 0, J = 2 ← 1 and ortho-NH_2 1_(1,1) ← 0_(0,0). We also observed ortho-NH_3 1_0 ← 0_0, and 2_0 ← 1_0, para-NH_3 2_1 ← 1_1, and searched unsuccessfully for NH^+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total column densities over the velocity range 11−54 km s^(−1) are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen, approximately 6 × 10^(−9), 3 × 10^(−9), and 3 × 10^(−9) for NH, NH_2, and NH_3, respectively. These abundances are discussed with reference to models of gas-phase and surface chemistry

    Role of friction-induced torque in stick-slip motion

    Full text link
    We present a minimal quasistatic 1D model describing the kinematics of the transition from static friction to stick-slip motion of a linear elastic block on a rigid plane. We show how the kinematics of both the precursors to frictional sliding and the periodic stick-slip motion are controlled by the amount of friction-induced torque at the interface. Our model provides a general framework to understand and relate a series of recent experimental observations, in particular the nucleation location of micro-slip instabilities and the build up of an asymmetric field of real contact area.Comment: 6 pages, 5 figure

    Dual energy X-ray absorptiometry positioning protocols in assessing body composition: A systematic review of the literature:A systematic review of the literature

    Get PDF
    OBJECTIVES: To systematically identify and assess methods and protocols used to reduce technical and biological errors in published studies that have investigated reliability of dual energy X-ray absorptiometry (DXA) for assessing body composition. DESIGN: Systematic review. METHODS: Systematic searches of five databases were used to identify studies of DXA reliability. Two independent reviewers used a modified critical appraisal tool to assess their methodological quality. Data was extracted and synthesised using a level of evidence approach. Further analysis was then undertaken of methods used to decrease DXA errors (technical and biological) and so enhance DXA reliability. RESULTS: Twelve studies met eligibility criteria. Four of the articles were deemed high quality. Quality articles considered biological and technical errors when preparing participants for DXA scanning. The Nana positioning protocol was assessed to have a strong level of evidence. The studies providing this evidence indicated very high test–retest reliability (ICC 0.90–1.00 or less than 1% change in mean) of the Nana positioning protocol. The National Health and Nutrition Examination Survey (NHANES) positioning protocol was deemed to have a moderate level of evidence due to lack of high quality studies. However, the available studies found the NHANES positioning protocol had very high test–retest reliability. Evidence is limited and reported reliability has varied in papers where no specific positioning protocol was used or reported. CONCLUSIONS: Due to the strong level of evidence of excellent test–retest reliability that supports use of the Nana positioning protocol, it is recommended as the first choice for clinicians when using DXA to assess body composition

    Universal features in sequential and nonsequential two-photon double ionization of helium

    Full text link
    We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of photon energy, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the photon energy. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parameterized by the anisotropy parameters, and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.Comment: 12 pages, 8 figure

    Dynamics of quantum systems

    Get PDF
    A relation between the eigenvalues of an effective Hamilton operator and the poles of the SS matrix is derived which holds for isolated as well as for overlapping resonance states. The system may be a many-particle quantum system with two-body forces between the constituents or it may be a quantum billiard without any two-body forces. Avoided crossings of discrete states as well as of resonance states are traced back to the existence of branch points in the complex plane. Under certain conditions, these branch points appear as double poles of the SS matrix. They influence the dynamics of open as well as of closed quantum systems. The dynamics of the two-level system is studied in detail analytically as well as numerically.Comment: 21 pages 7 figure
    • 

    corecore