13,351 research outputs found

    Automorphisms of p-local compact groups

    Get PDF
    Peer reviewedPostprin

    A Lattice Simulation of the SU(2) Vacuum Structure

    Get PDF
    In this article we analyze the vacuum structure of pure SU(2) Yang-Mills using non-perturbative techniques. Monte Carlo simulations are performed for the lattice gauge theory with external sources to obtain the effective potential. Evidence from the lattice gauge theory indicating the presence of the unstable mode in the effective potential is reported.Comment: 12 pages, latex with revtex style, figures avalable by e-mail: [email protected]

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    The Taming of QCD by Fortran 90

    Get PDF
    We implement lattice QCD using the Fortran 90 language. We have designed machine independent modules that define fields (gauge, fermions, scalars, etc...) and have defined overloaded operators for all possible operations between fields, matrices and numbers. With these modules it is very simple to write QCD programs. We have also created a useful compression standard for storing the lattice configurations, a parallel implementation of the random generators, an assignment that does not require temporaries, and a machine independent precision definition. We have tested our program on parallel and single processor supercomputers obtaining excellent performances.Comment: Talk presented at LATTICE96 (algorithms) 3 pages, no figures, LATEX file with ESPCRC2 style. More information available at: http://hep.bu.edu/~leviar/qcdf90.htm

    Time-delay in a multi-channel formalism

    Full text link
    We reexamine the time-delay formalism of Wigner, Eisenbud and Smith, which was developed to analyze both elastic and inelastic resonances. An error in the paper of Smith has propagated through the literature. We correct this error and show how the results of Eisenbud and Smith are related. We also comment on some recent time-delay studies, based on Smith's erroneous interpretation of the Eisenbud result.Comment: 4 pages, no figure

    Lie discrete symmetries of lattice equations

    Full text link
    We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differential-difference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlev\'e I equation and of the Toda lattice equation

    The lattice Schwarzian KdV equation and its symmetries

    Full text link
    In this paper we present a set of results on the symmetries of the lattice Schwarzian Korteweg-de Vries (lSKdV) equation. We construct the Lie point symmetries and, using its associated spectral problem, an infinite sequence of generalized symmetries and master symmetries. We finally show that we can use master symmetries of the lSKdV equation to construct non-autonomous non-integrable generalized symmetries.Comment: 11 pages, no figures. Submitted to Jour. Phys. A, Special Issue SIDE VI

    Lie point symmetries of differential--difference equations

    Full text link
    We present an algorithm for determining the Lie point symmetries of differential equations on fixed non transforming lattices, i.e. equations involving both continuous and discrete independent variables. The symmetries of a specific integrable discretization of the Krichever-Novikov equation, the Toda lattice and Toda field theory are presented as examples of the general method.Comment: 17 pages, 1 figur

    Lie point symmetries of difference equations and lattices

    Full text link
    A method is presented for finding the Lie point symmetry transformations acting simultaneously on difference equations and lattices, while leaving the solution set of the corresponding difference scheme invariant. The method is applied to several examples. The found symmetry groups are used to obtain particular solutions of differential-difference equations
    corecore