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Abstract

In this article we analyze the vacuum structure of pure SU(2) Yang-Mills

using non-perturbative techniques. Monte Carlo simulations are performed for

the lattice gauge theory with external sources to obtain the effective potential.

Evidence from the lattice gauge theory indicating the presence of the unstable

mode in the effective potential is reported.
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I. INTRODUCTION

Despite considerable progress a complete solution of non-abelian gauge theories has yet

to be found. The ultraviolet properties of such theories have been well analyzed, but even in

the simplest case, i.e. SU(2) without matter, little is known about their infrared properties

and vacuum structures. In order to gain a better understanding of these theories a necessary

first step is the study of the vacuum. For a general review of the vacuum structures see [1].

In this article we will show some lattice techniques and simulations that can be important

to reveal some aspects of the vacuum.

Several lattice Monte Carlo simulations [2] have been done to examine the vacuum struc-

tures. These simulations are usually very difficult because of the weakness of clear signals.

The lattice simulation that we are proposing in this article use a method that remove the

zero modes, and increase the possibilities of extracting information of the vacuum structures.

During the last few years many authors [3] have also explored the 3-dimensional case.

It is advantageous to use 3-dimensional lattices because of the possibility to obtain cleaner

data and larger volumes.

The SU(2) case should not be fundamentally different from other non-abelian gauge

theories. In fact, there is no reason why the QCD vacuum should differ qualitatively from

the SU(2) case. However, since the SU(2) case is easier to implement in lattice calculation,

it was chosen for our analysis.

II. EFFECTIVE POTENTIAL FOR NON-ABELIAN YANG-MILLS THEORIES

A powerful method to investigate the properties of Yang-Mills theories is to compute

the effective potential in the background gauge [4]. This manifestly gauge invariant scheme

is based on the observation that the loop expansion corresponds to an expansion in the

parameter h̄ which multiplies the entire action. Hence a shift of the fields or a redefinition

of the division of the Lagrangian into free and interacting parts can be performed at any
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finite order of the loop expansion without violating the manifest gauge invariance.

Let us split the gauge field into a background, Ab
µ, and a quantized field, ηbµ, as

Ab
µ = Ab

µ + ηbµ. Therefore the effective action will also be a functional of Ab
µ. The

gauge fixing condition is that the covariant four-divergence of the quantum field computed

on the background vanishes,

Dµη
b
µ ≡ (∂µδbc − igAd

µ(T
d)bc)η

c
µ = 0. (2.1)

The generating functional of connected Green’s functions is consequently defined as:

e
i
h̄
W̃ [J,A] =

∫

(dη) ∆(A, η) e
i
h̄
{S[A+η]+(J,η)− 1

2α
(Ga)2}, (2.2)

where ∆(Ab
µ, η

b
ν) is the Faddeev-Popov determinant, and Ga is the gauge-fixing term. As

pointed out by [5] several subtleties arise from the gauge fixing condition, due to the choosing

of the α gauge fixing parameter in the presence of a non-trivial background. A complete

discussion of this point is beyond the scope of this article.

Following Abbot’s notation [4] , let us define Q̃ = δW̃ [J,A]/δJ . Therefore the Legendre

transform of W̃ is

Γ̃[Q̃,A] = min
{J}

[

W̃ [J,A]− (J, Q̃)
]

, (2.3)

and the inverse relation is: J = −δΓ[Q̃,A]/δQ̃.

Using the background field as discussed above, the Lagrangian for the SU(2) Yang-Mills

theory is written as:

L(Ab
µ = Ab

µ + ηbµ) = − 1
4
F b
µν F µν

b = − 1
4
F (A)bµν F (A)µνb +

− 1
2
ηbµ (−D2δµν + Dµ Dν)bc ηcν + g εbcd ηbµ F (A)µνc ηdν +

− g εbcd (Dµην)b ηcµ ηdν − 1
4
g2 εbcd εbef ηcµ ηdν ηeρ ηfσ gµρ gνσ . (2.4)

As shown in [6] there are only two possible backgrounds that yield a static chromomag-

netic field that is the interesting field configuration to study the vacuum properties. One is

the so-called “non-abelian background” (see [7] and [5]), the other is called “Abelian”, and

is the one that we will discuss in this article.
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Without loss of generality we can always choose the chromomagnetic field along the z

direction, the abelian background can be written as:

Ab
µ =

1

2
H δb3 (δµ2 x − δµ1 y), (2.5)

where H is constant. We have F (A)F (A) = 1
2
H2. As discussed in [8] and [9] after several

manipulation the effective potential can be evaluated using:

− V (H)

ΩT
=

1

2
H2 +

gH

8π2

(
∫ ∞

−∞
dkz

∞
∑

n=0

∑

s=±1

√
νk,n,s − 2

∫ ∞

−∞
dkz

∞
∑

n=0

√

ν̃k,n

)

, (2.6)

where ΩT is the 4D volume, and νk,n,s = (2n + 1 + 2Sz)gH + k2
z are the eigenvalue of

the quadratic part of the Lagrangian. To derive this expression, the multiplicity of each

eigenvalue, the overall factor 2 of charge degeneracy, and the ghost contribution has been

taken in account. The last term is the contribution of the ghosts, that is the eigenvalue of

the operator (−D2)bc with the same boundary conditions as for the gluon sector. One finds

ν̃k,n = k2
z + (2n + 1)gH . To compute the expression (2.6) we have to regularize using the

Salam and Strathdee method.

This expression yields to the famous Savvidy [10] result, which is the one-loop effective

energy density for SU(2) in the presence of a static chromomagnetic field with abelian

background:

V (H)

ΩT
=

1

2
H2 +

11

48π2
g2H2

(

ln
gH

µ2
− 1

2

)

+ · · · . (2.7)

The remarkable feature of this expression is that it exhibits a minimum for H different from

zero, namely at gHmin = µ2 exp(−24π2

11g2
). As Nielsen and Olesen [9] realized, this minimum

has unstable modes. This instability can be seen from the fact that there is an imaginary

part of the effective energy density. The imaginary part comes solely from the n = 0 and

Sz = −1 contribution and in fact can be calculated directly,

Im
{

V (H)

ΩT

}

= − c

2
Im

{
∫ ∞

−∞
dk

√

k2 − gH
}

= − 1

8π
g2H2. (2.8)

Note that the existence of the imaginary part is essential to obtain asymptotic freedom.

This is because in the absence of the imaginary part the ultraviolet limit of (2.6) implies
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that the beta function will be the same as the one of a scalar particle of mass m2 = 2gH . It

is just the imaginary part which prevents us, after regulation, from rotating the integration

contour in the complex plane and thereby spoiling the asymptotic freedom.

Although Hmin is not a classical solution there is a possibility that non-perturbative

effects might cause this configuration to dominate the vacuum. Since the above mentioned

preliminary studies were done, the property of this non-trivial vacuum has been thoroughly

investigated. In particular a scenario, the so called “Copenhagen vacuum” [9] was proposed,

in which quantum fluctuations and gluons condensations might create domains of constant

chromomagnetic configurations.

In reference [8] this scenario was criticized arguing that in a strong field configuration

a perturbative analysis is unreliable, and unstable configurations can be analyzed only by

non-perturbative methods. Therefore the possible technique presently available to tackle

this problem is the lattice regularization. Monte Carlo simulation can be used to generate

the typical vacuum configurations, and thus, to obtain direct information about the vacuum

structure.

III. GENERAL RULES FOR IMPLEMENTING THE BACKGROUND FIELD

METHOD ON LATTICE

There are different ways to implement the background field method for lattice gauge

theory [11]. The procedure presented here is quite general and has the advantage that it

can be applied with different kinds of sources. Alternative methods are discussed in [2].

Instead of the usual variable, Uµ
n = eiagη

µ
b
(n)T b

, we introduce a new link variable in the

presence of a background field, U(A)µn = f(a, η(A)a
µ (n)), in such a way that the continuum

limit gives the expected continuum expressions,

lim
a→0

η(A)b
µ (n) = ηbµ(x) + Ab

µ(x) (3.1)

lim
a→0

(

S[U(A)µn] − S[Uµ
n ]

)

= S[ηaµ +Ab
µ] − S[ηaµ], (3.2)
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where S is the usual action for lattice gauge theories, and can eventually can be substituted

by an improved action.

The Euclidean generator functional is defined as:

e−W̃ [j,A] =

∫

bc(η(A)) (dU) e−SW [U (A)] − j κ[η(A)]

∫

bc(η) (dU) e−SW [U ]
, (3.3)

where κ is a functional of the source that must be chosen to recover the continuum limit in

the scaling region. The normalization here is chosen to be the same as the one without the

background field. This choice is not the only possible one since the potential is defined only

up to an arbitrary additive constant.

The important point is that in the presence of a background field we must take the

boundary condition which makes η(A) periodic, U(A)µn = U(A)µn+La, where L is the lattice

size. However the normalization integral is calculated with periodic boundary conditions for

the links without the constant chromomagnetic field, Uµ
n = Uµ

n+La.

Amongst the possible ways to define the link in the presence of a background field, a

natural choice is

U(A)µn = e
i
2
agAb

µ(n)T
b

eiagη
b
µ(n)T

b

e
i
2
agAb

µ(n)T
b

. (3.4)

We used three kinds of different sources in our computations. For simplicity in the

following, we shall always choose the z direction as the spatial direction of the constant

chromomagnetic field. The first possibility is the so called “abelian source” because it points

in the third color direction. Such a source explores the Cartan subalgebra of SU(2), and

thus is called abelian. The natural counterpart is the “diagonal source”, when the source is

a combination of the generators in the color directions 1 and 2. For simplicity we choose the

combination which is proportional to T± = T 1± iT 2. This source explores the non-diagonal

matrix elements of SU(2). A third possibility is the so called “quadratic source” where a

combination which is parallel to the external chromomagnetic field is used.

These three sources have advantages and disadvantages when used in lattice Monte Carlo

simulations. We now describe the abelian source in more detail. For the abelian source the

term in equation (3.3) read as
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j κ[η(A)] =
∑

n,b,µ

j
a4

2
δb3 (δµ2 − δµ1) η(A)b

µ (n), (3.5)

with j as an arbitrary source strength. Using the prescription given by (3.4), the link variable

is

U(A)µn = Uµ
n (for µ = 0, 3)

U(A)1n = e−
i
4
a2gHn2T 3

U1
n e−

i
4
a2gHn2T 3

U(A)2n = e
i
4
a2gHn1T 3

U2
n e

i
4
a2gHn1T 3

, (3.6)

n the presence of a background field (2.5). Then equation (2.3) becomes

Γ̃[q̃,A] = min
{j}

[

W̃ [j,A]− (j, q̃)
]

, (3.7)

which can be obtained explicitly by (3.3).

IV. THE PRESENCE OF THE UNSTABLE MODE ON LATTICE

We detect the presence of unstable modes in the lattice is by analyzing the energy density.

Let us consider the contributions to the effective potential from equation (2.6). As discussed

above, the quantity,

√
νk,n,s =

√

gH (2n + 1 + 2Sz) + k2
z (4.1)

becomes imaginary for Sz = −1 , n = 0 and sufficiently small k2
z . Due to the finiteness

of the lattice kz is quantized as well, as kz = 2mπ/Lz, where m is an integer. The lowest

inhomogeneous z-mode, m = 1, becomes stable for lattices whose extent in the z-direction

is smaller than

Lcritical
z =

2π√
gH

. (4.2)

The homogeneous mode, m = 0, which is always unstable, is eliminated by imposing the

condition
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Lz
∏

j=1

U3
z=j = 1 , (4.3)

in the path integral. This enables us to search for the critical size, Lcritical
z , by changing H

and looking for a sign of instability.

In these Monte Carlo simulations we generated a background field H in the z direction

and measured the expectation value of the plaquette in the 1-2 plane F12 as a function of

β and j. We used a heat bath updating procedure with periodic boundary conditions in

presences of sources. The special feature of this simulation was that we forced the Polyakov

line in the z direction (4.3) to take a fixed value. We made Monte Carlo simulations in

a lattice volume L3 ∗ Lz, where L is the size of the x, y, t directions. We bypassed the

difficulty of needing for a huge lattice because the directions x , y and t do not have to be

large. In fact, they are irrelevant for the homogeneous mode, m=0, and the dependence on

these directions shows up only through the excitation of higher n-modes which represent

higher order perturbative effects. Lattice artifacts might induce some small dependence on

t, x, y, but lattice simulations with different Lt ∗ Lx ∗ Ly, but fixed Lz, show insignificant

dependence on these parameters, as predicted theoretically. We have varied Lz from 4 to

50, and Lt, Lx, Ly from 4 to 16 reaching a maximum lattice of 103 ∗ 50. Unfortunately

our programs were designed only to handle even lattice sizes because of the checkerboard

addresses.

We monitored the quantity

X =
Pz[F12(β, 0)] − Pz[F12(β, j)]

j Pz[F12(β, 0)]
, (4.4)

where Pz is the plaquette in the z direction. This quantity is proportional to the contribution

of the plaquette in the z direction of ∆E(F ext
12 /(F ext

12 )2 and therefore is very sensitive to the

presence of the unstable modes. We measured X for different values of β and j performing,

for large j 4500 sweeps after discharging 500 for thermalization. For smaller j we increase

the number of sweeps until a significant amount of data was collected. 4 updating sweeps

were made between subsequent measurements.
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Our data show no sign of the unstable mode away from the critical β region (β =

2.1 − 2.5). The situation changes dramatically in the critical region where the instability

appears as a decrease of the vacuum energy contribution to the plaquette in the z direction.

This effect becomes more evident in the presence of strong sources.

Thus far, we analyzed systematically the critical region of β from 2.10 to 2.50 with steps

of 0.05 for j = 1.00, 0.75, 0.50, 0.25; for some β we also explored j = 0.125 and j = 0.1. We

computed the value of Lcritical
z by interpolating for X and taking the median value. Lcritical

z

was found to be dependent on the sources strength j and β in this region.

To represent a physical quantity Lcritical
z must scale with j according to equation (4.2).

The manifestation of the rescaling is evident for β near β = 2.30. Moreover the agreement

between the theoretical effective potential predictions and the lattice simulation results is

very good.

An important condition is that Lcritical
z should be greater than the deconfinement phase

transition length, i.e. Lcritical
z must belong to the confinement phase. From the renormaliza-

tion group considerations we have

Lcritical
z Λcritical = (

11

6π β
)−51/121 e

−3π2β
11

[

1 + O
(

1

β

)]

. (4.5)

Hence the ratio between the Λcritical and the renormalization scale parameter Λ is indepen-

dent of β. Using the well known value of Λ given by [12], we have

Λ

Λcritical(j = 1.00)
= 1.226± 0.019

Λ

Λcritical(j = 0.75)
= 1.390± 0.025

Λ

Λcritical(j = 0.50)
= 1.572± 0.026

Λ

Λcritical(j = 0.25)
= 1.934± 0.031. (4.6)

It is clear from these results that Lcritical
z belongs to the confinement phase and there is a

good agreement with the renormalization group equation (see Fig. 2).

Using our data we also evaluated Ldeconf as a function of β. These values are obtained by

comparing the plaquette in the t and z directions. From Ldeconf using the renormalization
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equation we estimated the renormalization scale parameter Λ. This data are compatible

with reference [12] where simulations were done specifically to analyze the deconfinement

transition. Nevertheless the comparison is interesting because it shows that from our data

we can extract Ldeconf which is clearly distinct from Lcritical
z (j).

The limit j → 0 is obtained by studying the ratio (4.6) for several j and then ex-

trapolating to zero. The result is Λ/Λcritical(j = 0) = 2.5 ± 0.2, which corresponds to

Lcritical
z (β = 2.3, j = 0) ∼ 18. The ratio of the characteristic lengths is found to be

Lcritical
z

Ldeconf

= 2.5 ± 0.2. (4.7)

It is worthwhile noting that the energy density measured by (4.4) shows a small peak at

L̃z ≈ 2Lcritical
z , indicating the onset of the instability of the next k = 4π/Lz, mode. One may

expect weaker singularities at ≈ mLcritical
z which correspond to higher momentum modes,

too.

V. SUMMARY AND CONCLUSIONS

We support the analysis made by [8] showing that the vacuum structure of SU(2) is a

non-perturbative effect, necessitating lattice regularization. In particular we analyzed the

difference between stable and unstable configurations, and the origin of the instability for

SU(2).

Near the critical value of the coupling constant (near β = 2.3) we detected the presence of

the unstable mode for the first time by Monte Carlo simulations. In particular by changing

the lattice volume and the source j we are able to turn the unstable mode on and off . This

allowed us to analyze the behavior of the unstable mode, showing that it has the correct

behavior in the limit j → 0 and under the renormalization group equations.

We found that there is a new length scale, Lcritical, in the theory given by (4.7) which

is significantly larger than the confinement radius, Ldeconf . This is rather puzzling since

no correlations were expected to show up beyond the confinement radius, Ldeconf . Another
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surprising result was the appearance of the singularity driven by the instability of the higher

momentum mode with momentum k = 4π/Lz. This suggests the presence of ”resonances”

corresponding to even longer length scales, mLcritical.

One may interpret our results by exchanging the z and the time directions. In this

language we found singularities in the pressure at temperatures below the deconfinement

transition driven by unstable electric condensate. In order to make more precise conclusions

one has to delve in to the continuum and the j → 0 limit.

We can establish two conditions that the lattice system should satisfy in order to reflect

the richness of the non-perturbative vacuum of the continuum theory. One such condition is

that a lattice size greater than Lz(β, j = 0) is needed to display the instability. Another one

comes from the observation that the instability disappears outside the scaling window. Thus

this instability is a distinguishing feature of the continuum rather than the strong coupling

vacuum. In order to study the continuum theory we should remain in the region where the

instability is manifest. The disappearance of the instability as β → 0 may provide a clue to

understanding the difference between the physics of the continuum and the strong coupling

lattice theory.
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FIGURE CAPTIONS

Figure 1.

The quantity X = Pz(β,0)−Pz(β,j)
jPz(β,0)

as a function of the lattice size Lz for β = 2.35 and

j = 1.0 (stars); j = 0.75 (squares); j = 0.50 (crosses); j = 0.25 (diamonds).

Figure 2.

Lcritical
z (j = 1.00) (stars), Lcritical

z (j = 0.75) (squares), Lcritical
z (j = 0.50) (crosses),

Lcritical
z (j = 0.25) (diamonds), with their renormalization group dependence fit (dashed

lines); and the deconfinement transition from reference [12] (full line).

11



REFERENCES

[1] A.R. Levi, “Subtleties and Fancies in Gauge Theory non Trivial Vacuum”, Proceedings

of the “Quantum Infrared Physics Workshop”, (World Scientific 1985).

[2] J. Ambjørn et al., Phys. Lett. 225B (1989) 153; 245B (1990) 575; P. Cea and L.

Cosmai, Phys. Rev. D43 (1991) 620; Phys. Lett. 264B (1991) 415; A.R. Levi, Nucl.

Phys. (proc. supl.) B34 (1994) 161.

[3] H.D. Trottier, Phys. Rev. D44 (1991) 464; H.D. Trottier and R.M. Woloshyn, Phys.

Rev. Lett. 70 (1993) 2053; P. Cea and L. Cosmai, Phys. Rev. D48 (1993) 3364.

[4] B.S. DeWitt, Phys. Rev. Lett. 162 (1967) 1195; G. ’t Hooft, Nucl. Phys. B62 (1973)

444; L.F. Abbott, Nucl. Phys. B185 (1981) 189.

[5] S. Huang and A.R. Levi, Phys. Rev. D49 (1994) 6849.

[6] L.S. Brown and W.I. Weisberger, Nucl. Phys. B157 (1979) 285.

[7] J. Ambjørn, N.K. Nielsen and P. Olesen, Nucl. Phys. B152 (1979) 75.

[8] L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Nucl. Phys. B273 (1986) 275.

[9] N.K. Nielsen and P. Olesen, Nucl. Phys. B144 (1978) 376; Phys. Lett. 79B (1978) 304;

H.B. Nielsen and M. Ninomiya , Nucl. Phys. B156 (1979) 1; J. Ambjørn and P. Olesen,

Nucl. Phys. B170 (1980) 60 and 265; J. Ambjørn et al., Nucl. Phys. B175 (1980) 349;

R. Parthasarathy et al., Can. Jour. Phys 61 (1983) 1442; R. Anishetty et al., J. Phys

G16 (1990) 375 and 1187.

[10] G.K. Savvidy, Phys. Lett. 71B (1977) 133; S.G. Matinyan and G.K. Savvidy, Nucl.

Phys. B134 (1978) 539.

[11] R. Dashen and D.J. Gross Phys. Rev. D23 (1981) 2340.

[12] J. Kuti, J. Polonyi and K. Szlachanyi Phys. Lett. 98B (1981) 199; E. Kovacs, Phys.

Lett. 118B (1982) 125.

12


