57,690 research outputs found

    Definition of the stimulated emission threshold in high-β\beta nanoscale lasers through phase-space reconstruction

    Full text link
    Nanoscale lasers sustain few optical modes so that the fraction of spontaneous emission β\beta funnelled into the useful (lasing) mode is high (of the order of few 101^{-1}) and the threshold, which traditionally corresponds to an abrupt kink in the light in- light out curve, becomes ill-defined. We propose an alternative definition of the threshold, based on the dynamical response of the laser, which is valid even for β=1\beta=1 lasers. The laser dynamics is analyzed through a reconstruction of its phase-space trajectory for pulsed excitation. Crossing the threshold brings about a change in the shape of the trajectory and in the area contained in it. An unambiguous definition of the threshold in terms of this change is shown theoretically and illustrated experimentally in a photonic crystal laser

    HORACE: software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments

    Get PDF
    The HORACE suite of programs has been developed to work with large multiple-measurement data sets collected from time-of-flight neutron spectrometers equipped with arrays of position-sensitive detectors. The software allows exploratory studies of the four dimensions of reciprocal space and excitation energy to be undertaken, enabling multi-dimensional subsets to be visualized, algebraically manipulated, and models for the scattering to simulated or fitted to the data. The software is designed to be an extensible framework, thus allowing user-customized operations to be performed on the data. Examples of the use of its features are given for measurements exploring the spin waves of the simple antiferromagnet RbMnF3_{3} and ferromagnetic iron, and the phonons in URu2_{2}Si2_{2}.Comment: 14 pages, 6 figure

    Synchronous Behavior of Two Coupled Electronic Neurons

    Full text link
    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four dimensional ENs which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.Comment: 26 pages, 10 figure

    Pseudo-epsilon expansion and the two-dimensional Ising model

    Full text link
    Starting from the five-loop renormalization-group expansions for the two-dimensional Euclidean scalar \phi^4 field theory (field-theoretical version of two-dimensional Ising model), pseudo-\epsilon expansions for the Wilson fixed point coordinate g*, critical exponents, and the sextic effective coupling constant g_6 are obtained. Pseudo-\epsilon expansions for g*, inverse susceptibility exponent \gamma, and g_6 are found to possess a remarkable property - higher-order terms in these expansions turn out to be so small that accurate enough numerical estimates can be obtained using simple Pade approximants, i. e. without addressing resummation procedures based upon the Borel transformation.Comment: 4 pages, 4 tables, few misprints avoide

    Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays

    Get PDF
    The use of etched nanorods from a planar template as a growth scaffold for a highly regular GaN/InGaN/GaN core-shell structure is demonstrated. The recovery of m-plane non-polar facets from etched high-aspect-ratio GaN nanorods is studied with and without the introduction of a hydrogen silsesquioxane passivation layer at the bottom of the etched nanorod arrays. This layer successfully prevented c-plane growth between the nanorods, resulting in vertical nanorod sidewalls (∼89.8°) and a more regular height distribution than re-growth on unpassivated nanorods. The height variation on passivated nanorods is solely determined by the uniformity of nanorod diameter, which degrades with increased growth duration. Facet-dependent indium incorporation of GaN/InGaN/GaN core-shell layers regrown onto the etched nanorods is observed by high-resolution cathodoluminescence imaging. Sharp features corresponding to diffracted wave-guide modes in angle-resolved photoluminescence measurements are evidence of the uniformity of the full core-shell structure grown on ordered etched nanorods

    Effects of Dust on Gravitational Lensing by Spiral Galaxies

    Full text link
    Gravitational lensing of an optical QSO by a spiral galaxy is often counteracted by dust obscuration, since the line-of-sight to the QSO passes close to the center of the galactic disk. The dust in the lens is likely to be correlated with neutral hydrogen, which in turn should leave a Lyman-alpha absorption signature on the QSO spectrum. We use the estimated dust-to-gas ratio of the Milky-Way galaxy as a mean and allow a spread in its values to calculate the effects of dust on lensing by low redshift spiral galaxies. Using a no-evolution model for spirals at z<1 we find (in Lambda=0 cosmologies) that the magnification bias due to lensing is stronger than dust obscuration for QSO samples with a magnitude limit B<16. The density parameter of neutral hydrogen, Omega_HI, is overestimated in such samples and is underestimated for fainter QSOs.Comment: 18 pages, 4 figures, ApJ, in pres

    Nishimori point in the 2D +/- J random-bond Ising model

    Full text link
    We study the universality class of the Nishimori point in the 2D +/- J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free-energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p_c = 0.1094 +/- 0.0002 and estimate nu = 1.33 +/- 0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464 +/- 0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.Comment: 4 pages REVTeX, 3 PostScript figures; final version to appear in Phys. Rev. Lett.; several small changes and extended explanation

    Maximum likelihood drift estimation for a threshold diffusion

    Get PDF
    We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called drifted Oscillating Brownian motion.For this continuously observed diffusion, the maximum likelihood estimator coincide with a quasi-likelihood estimator with constant diffusion term. We show that this estimator is the limit, as observations become dense in time, of the (quasi)-maximum likelihood estimator based on discrete observations. In long time, the asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations

    On The Finite Temperature Chern-Simons Coefficient

    Full text link
    We compute the exact finite temperature effective action in a 0+1-dimensional field theory containing a topological Chern-Simons term, which has many features in common with 2+1-dimensional Chern-Simons theories. This exact result explains the origin and meaning of puzzling temperature dependent coefficients found in various naive perturbative computations in the higher dimensional models.Comment: 11 pages LaTeX; no figure
    corecore