12,438 research outputs found
Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation
We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation
Testing of pear trees on their own roots in comparison with important used rootstocks under organic farming conditions with special regard to fire blight (E. amylovora)
Pear trees on their own roots are tested in comparison to grafted trees in growth and yield
characteristics and with special regard to the tolerance to diseases, above all fire blight
(Erwinia amylovora). In spring 2004 15 randomized trees of the cultivar 'Williams' from
three variants (self rooted in vitro, self rooted long cuttings, grafted on Quince A) were
planted in a pear orchard, which was heavily infected with fire blight (Erwinia amylovora)
the previous years. The trees were left untreated. Growth and yield characteristics, plant
diseases and tree losses were observed. After four years the in vitro self rooted trees were
significantly more vigorous in growth than those grafted on quince A. The self rooted long
cuttings were comparable in growth with grafts on quince, but showed high tree losses
probably due to frost damages in the first winter one year after planting. However no
infections with Erwinia amylovora could be observed so far. In a field trial with more
cultivars and rootstock variants planted in 2006 at two organically managed sites more
significant effects are expected in the next years
The possible importance of synchrotron/inverse Compton losses to explain fast mm-wave and hard X-ray emission of a solar event
The solar burst of 21 May 1984, presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency of greater than or approximately 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (0.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and greater than or approximately 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-ray power law indices were found. A synchrotron/inverse Compton model was applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures
Association of mid-infrared solar plages with Calcium K line emissions and magnetic structures
Solar mid-IR observations in the 8-15 micrometer band continuum with moderate
angular resolution (18 arcseconds) reveal the presence of bright structures
surrounding sunspots. These plage-like features present good association with
calcium CaII K1v plages and active region magnetograms. We describe a new
optical setup with reflecting mirrors to produce solar images on the focal
plane array of uncooled bolometers of a commercial camera preceded by germanium
optics. First observations of a sunspot on September 11, 2006 show a mid-IR
continuum plage exhibiting spatial distribution closely associated with CaII
K1v line plage and magnetogram structures. The mid-IR continuum bright plage is
about 140 K hotter than the neighboring photospheric regions, consistent with
hot plasma confined by the magnetic spatial structures in and above the active
regionComment: 5 pages, 4 figures. Accepted by PAS
Short-lived solar burst spectral component at f approximately 100 GHz
A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays
The possible importance of synchrotron/inverse Compton losses to explain fast MM-wave and hard X-ray emission of a solar event
The solar burst of 21 May 1984 presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency or approx. 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and or approx. 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-rays power law indices have been found. A synchrotron/inverse Compton model has been applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures
A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)
High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses
Determination of Gd concentration profile in UO2-Gd2O3 fuel pellets
A transversal mapping of the Gd concentration was measured in UO2-Gd2O3
nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The
quantification was made from the comparison with a Gd2O3 reference sample. The
nominal concentration in the pellets is UO2: 7.5 % Gd2O3. A concentration
gradient was found, which indicates that the Gd2O3 amount diminishes towards
the edges of the pellets. The concentration varies from (9.3 +/- 0.5)% in the
center to (5.8 +/- 0.3)% in one of the edges. The method was found to be
particularly suitable for the precise mapping of the distribution of Gd3+ ions
in the UO2 matrix.Comment: 10 pages, 5 figures, 2 tables. Submitted to Journal of Nuclear
Material
- …