307 research outputs found

    EHMT1/GLP; biochemical function and association with brain disorders

    Get PDF
    The gene EHMT1 that encodes the Euchromatic Histone Methyltransferase-1, also known as GLP (G9a-like protein), has been associated with a number of neurodevelopmental and neurodegenerative disorders. GLP is a member of the euchromatic lysine histone methyltransferase family, along with EHMT2 or G9A. As its name implies, Ehmt1/GLP is involved in the addition of methyl groups to histone H3 lysine 9, a generally repressive mark linked to classical epigenetic process such as genomic imprinting, X-inactivation, and heterochromatin formation. However, GLP also plays both a direct and indirect role in regulating DNA-methylation. Here, we discuss what is currently known about the biochemical function of Ehmt1/GLP and its association, via various genetic studies, with brain disorders

    Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications

    Get PDF
    Our willingness to take risks, our ability to wait or the speed with which to make decisions are central features of our personality. However, it is now recognized that impulsive and risk-taking behaviours are not a unitary construct, and different aspects can be both psychologically and neurally dissociated. The range of neurochemicals and brain systems that govern these behaviours is extensive, and this may be a contributing factor to the phenotypic range seen in the human population. However, this variety can also be pathological as extremes in risk-taking and impulsive behaviours are characteristics of many neuropsychiatric and indeed neurodegenerative disorders. This spans obsessive–compulsive disorder, where behaviour becomes ridged and non-spontaneous, to the nonsensical risk-taking seen in gambling and drug taking

    Imprinted genes influencing the quality of maternal care

    Get PDF
    In mammals successful rearing imposes a cost on later reproductive fitness specifically on the mother creating the potential for parental conflict. Loss of function of three imprinted genes in the dam result in deficits in maternal care suggesting that, like maternal nutrients, maternal care is a resource over which the parental genomes are in conflict. However, the induction of maternal care is a complex and highly regulated process. Unsurprisingly many gene disruptions, as well as adverse environmental exposures in pregnancy, result in maternal care deficits. Recent compelling evidence for a more purposeful imprinting phenomenon comes from studying the impact of two imprinted genes, Phlda2 and Peg3, expressed in the placenta on the mother’s behaviour. The explicit demonstration that imprinted genes expressed in the offspring influence maternal behaviour lends significant weight to the hypothesis that maternal care is a resource that has been manipulated by the paternal genome

    Observations of red-giant variable stars by Aboriginal Australians

    Full text link
    Aboriginal Australians carefully observe the properties and positions of stars, including both overt and subtle changes in their brightness, for subsistence and social application. These observations are encoded in oral tradition. I examine two Aboriginal oral traditions from South Australia that describe the periodic changing brightness in three pulsating, red-giant variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only known descriptions of pulsating variable stars in any Indigenous oral tradition in the world. Researchers examining these oral traditions over the last century, including anthropologists and astronomers, missed the description of these stars as being variable in nature as the ethnographic record contained several misidentifications of stars and celestial objects. Arguably, ethnographers working on Indigenous Knowledge Systems should have academic training in both the natural and social sciences.Comment: The Australian Journal of Anthropology (2018

    Dopaminergic and behavioral changes in a loss-of-imprinting model of Cdkn1c

    Get PDF
    The imprinted gene Cdkn1c is expressed exclusively from the maternally inherited allele as a consequences of epigenetic regulation. Cdkn1c exemplifies many of the functional characteristics of imprinted genes, playing a role in foetal growth and placental development. However, Cdkn1c also plays an important role in the brain, being key to the appropriate proliferation and differentiation of midbrain dopaminergic neurons. Using a transgenic model (Cdkn1cBACx1) with a twofold elevation in Cdkn1c expression that mimics loss‐of‐imprinting, we show that increased expression of Cdkn1c in the brain gives rise to neurobiological and behavioural changes indicative of a functionally altered dopaminergic system. Cdkn1cBACX1 mice displayed altered expression of dopamine system‐related genes, increased tyrosine hydroxylase (Th) staining and increased tissue content of dopamine in the striatum. In addition, Cdkn1cBACx1 animals were hypersensitive to amphetamine as showed by c‐fos expression in the nucleus accumbens. Cdkn1cBACX1 mice had significant changes in behaviours that are dependent on the mesolimbic dopaminergic system. Specifically, increased motivation for palatable food stuffs, as indexed on a progressive ratio task. In addition, Cdkn1cBACX1 mice displayed enhanced social dominance. These data show, for the first time, the consequence of elevated Cdkn1c expression on dopamine‐related behaviours highlighting the importance of correct dosage of this imprinted gene in the brain. This work has significant relevance for deepening our understanding of the epigenetic factors that can shape neurobiology and behaviour

    Mice lacking paternal expression of imprinted 1 Grb10 are risk-takers

    Get PDF
    The imprinted genes Grb10 and Nesp influence impulsive behavior on a delay discounting task in an opposite manner. A recently developed theory suggests that this pattern of behavior may be representative of predicted effects of imprinted genes on tolerance to risk. Here we examine whether mice lacking paternal expression of Grb10 show abnormal behavior across a number of measures indicative of risk‐taking. Although Grb10 +/p mice show no difference from wild type (WT) littermates in their willingness to explore a novel environment, their behavior on an explicit test of risk‐taking, namely the Predator Odor Risk‐Taking task, is indicative of an increased willingness to take risks. Follow‐up tests suggest that this risk‐taking is not simply because of a general decrease in fear, or a general increase in motivation for a food reward, but reflects a change in the trade‐off between cost and reward. These data, coupled with previous work on the impulsive behavior of Grb10 +/p mice in the delayed reinforcement task, and taken together with our work on mice lacking maternal Nesp , suggest that maternally and paternally expressed imprinted genes oppositely influence risk‐taking behavior as predicted

    Loss of offspring Peg3 reduces neonatal ultrasonic vocalizations and increases maternal anxiety in wild-type mothers

    Get PDF
    Depression and anxiety are the most common mental health conditions during pregnancy and can impair the normal development of mother-infant interactions. These adversities are associated with low birth weight and increased risk of behavioural disorders in children. We recently reported reduced expression of the imprinted gene PATERNALLY EXPRESSED GENE 3 (PEG3) in placenta of human infants born to depressed mothers. Expression of Peg3 in brain has previously been linked maternal behaviour in rodents, at least in some studies, with mutant dams neglecting their pups. However, in our human study decreased expression was in the placenta derived from the fetus. Here, we examined maternal behaviour in response to reduced expression of Peg3 in the feto-placental unit. Prenatally we found novelty reactivity was altered in wildtype females carrying litters with a null mutation in Peg3. This behavioural alteration was short-lived and there were no significant differences the transcriptomes of either the maternal hypothalamus or hippocampus at E16.5. In contrast, while maternal gross maternal care was intact postnatally, the exposed dams were significantly slower to retrieve their pups and displayed a marked increase in anxiety. We also observed a significant reduction in the isolation-induced ultrasonic vocalisations (USVs) emitted by mutant pups separated from their mothers. USVs are a form of communication known to elicit maternal care suggesting Peg3 mutant pups drive the deficit in maternal behaviour. These data support the hypothesis that reduced placental PEG3 in human pregnancies occurs as a consequence of prenatal depression but leaves scope for feto-placental Peg3 dosage, during gestation, influencing aspects of maternal behaviour

    Distinct physiological and behavioural functions for parental alleles of imprinted Grb10

    Get PDF
    Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development1, but also postnatal functions including energy homeostasis2 and behaviour3, 4. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success)5, 6, imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules7. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues

    Evolution of cooperation without reciprocity

    Full text link
    A long-standing problem in biological and social sciences is to understand the conditions required for the emergence and maintenance of cooperation in evolving populations. For many situations, kin selection(1) is an adequate explanation, although kin-recognition may still be a problem. Explanations of cooperation between non-kin include continuing interactions that provide a shadow of the future (that is, the expectation of an ongoing relationship) that can sustain reciprocity(2-4), possibly supported by mechanisms to bias interactions such as embedding the agents in a two-dimensional space(4-6) or other context-preserving networks(7). Another explanation, indirect reciprocity(8), applies when benevolence to one agent increases the chance of receiving help from others. Here we use computer simulations to show that cooperation can arise when agents donate to others who are sufficiently similar to themselves in some arbitrary characteristic. Such a characteristic, or 'tag', can be a marking, display, or other observable trait. Tag-based donation can lead to the emergence of cooperation among agents who have only rudimentary ability to detect environmental signals and, unlike models of direct(3,4) or indirect reciprocity(9,10), no memory of past encounters is required.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62686/1/414441a0.pd

    Four-colour photometry of eclipsing binaries. XLI uvby light curves for AD Bootis, HW Canis Majoris, SW Canis Majoris, V636 Centauri, VZ Hydrae, and WZ Ophiuchi

    Full text link
    CONTEXT: Accurate mass, radius, and abundance determinations from binaries provide important information on stellar evolution, fundamental to central fields in modern astrophysics and cosmology. AIMS: Within the long-term Copenhagen Binary Project, we aim to obtain high-quality light curves and standard photometry for double-lined detached eclipsing binaries with late A, F, and G type main-sequence components, needed for the determination of accurate absolute dimensions and abundances, and for detailed comparisons with results from recent stellar evolutionary models. METHODS: Between March 1985 and July 2007, we carried out photometric observations of AD Boo, HW CMA, SW CMa, V636 Cen, VZ Hya, and WZ Oph at the Str"omgren Automatic Telescope at ESO, La Silla. RESULTS: We obtained complete uvby light curves, ephemerides, and standard uvby\beta indices for all six systems.For V636 Cen and HW CMa, we present the first modern light curves, whereas for AD Boo, SW CMa, VZ Hya, and WZ Oph, they are both more accurate and more complete than earlier data. Due to a high orbital eccentricity (e = 0.50), combined with a low orbital inclination (i = 84.7), only one eclipse, close to periastron, occurs for HW CMa. For the two other eccentric systems, V636 Cen (e = 0.134) and SW CMa (e = 0.316), apsidal motion has been detected with periods of 5270 +/- 335 and 14900 +/- 3600 years, respectively.Comment: Only change is: Bottom lines (hopefully) not truncated anymore. Accepted for publication in Astonomy & Astrophysic
    corecore