6,356 research outputs found

    3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks

    Full text link
    In recent years, numerical models have become popular and powerful tools to investigate the electromagnetic behavior of superconductors. One domain where this advances are most necessary is the 3D modeling of the electromagnetic behavior of superconductors. For this purpose, a benchmark problem consisting of superconducting cube subjected to an AC magnetic field perpendicular to one of its faces has been recently defined and successfully solved. In this work, a situation more relevant for applications is investigated: a superconducting parallelepiped bulk with the magnetic field parallel to two of its faces and making an angle with the other one without and with a further constraint on the possible directions of the current. The latter constraint can be used to model the magnetization of a stack of high-temperature superconductor tapes, which are electrically insulated in one direction. For the present study three different numerical approaches are used: the Minimum Electro-Magnetic Entropy Production (MEMEP) method, the HH-formulation of Maxwell's equations and the Volume Integral Method (VIM) for 3D eddy currents computation. The results in terms of current density profiles and energy dissipation are compared, and the differences in the two situations of unconstrained and constrained current flow are pointed out. In addition, various technical issues related to the 3D modeling of superconductors are discussed and information about the computational effort required by each model is provided. This works constitutes a concrete result of the collaborative effort taking place within the HTS numerical modeling community and will hopefully serve as a stepping stone for future joint investigations

    Finite Difference Synthetic Acoustic Logs

    Get PDF
    Synthetic seismograms of elastic wave propagation in a fluid-filled borehole were generated using both the finite difference technique and the discrete wavenumber summation technique. The latter is known to be accurate for both body and surface (guided) waves. The finite difference grid has absorbing boundaries on two sides and axes of symmetry on the remaining two sides. A grid size no less than 10 points per wavelength was used. The far absorbing boundary was located at a distance of five to 10 radii from the borehole. Two types of solid-liquid interfaces were investigated: 1) a velocity gradient using the heterogeneous formulation, and 2) a sharp boundary using a second order Taylor expansion of the displacements. The results from the finite difference modeling were compared with the synthetic seismograms generated by the discrete wavenumber summation method. No comparison the heterogeneous formulation and the discrete wavenumber method has been made. The second order approximation to the solid-liquid interface produced seismograms that compared 'well with the discrete wavenumber seismograms. A detailed comparison between the seismograms generated by the two methods showed that the body waves (refracted P and S waves) are identical. while the guided waves showed a slight difference in both phase and amplitude. These differences are believed to be due to the approximations introduced in the fluid-solid interface, the absorbing boundary at the edge of the grid, and the grid and time step sizes involved. Owing. to the fact that they are interface waves, the guided waves, especially the higher modes, are much more sensitive to the above mentioned approximations

    β-decay half-lives and β-delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N = 126

    Get PDF
    Background: There have been measurements on roughly 230 nuclei that are β-delayed neutron emitters. They range from 8 He up to 150La. Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A = 150. Therefore, new data are needed, particularly in the region of heavy nuclei around N = 126, in order to guide theoretical models and help understand the formation of the third r-process peak at A ∼ 195. Purpose: To measure both β-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bi isotopes beyond N = 126. Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3 He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β-decay half-lives are reported for 204−206Au, 208–211Hg, 211–216Tl, 215–218Pb, and 218–220Bi, nine of them for the first time. Neutron emission probabilities are reported for 210,211Hg and 211–216Tl. Conclusions: The new β-decay half-lives are in good agreement with previous measurements on nuclei in this region. The measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).Spanish Ministerio de Economía y Competitividad-FPA2011- 28770-C03-03, FPA2008-04972-C03-3, AIC-D2011-0705, FPA2011-24553, FPA2008-6419, FPA2010-17142, FPA2014-52823-C2-1-P, FPA2014- 52823-C2-2-P, and CPAN CSD-2007-00042 (Ingenio2010)Program Severo Ochoa-SEV-2014-0398German Helmholtz Association (Young Investigators)-VH-NG 627 (LISA-Lifetime Spectroscopy for Astrophysics)Nuclear Astrophysics Virtual Institute-VH-VI-417German Bundesministerium für Bildung und Forschung-06MT7178 / 05P12WOFNFSpanish Nuclear Security Council (CSN)-Catedra ArgosUK Science & Technology Facilities Council (STFC)-ST/F012012/

    ac Losses in a Finite Z Stack Using an Anisotropic Homogeneous-Medium Approximation

    Full text link
    A finite stack of thin superconducting tapes, all carrying a fixed current I, can be approximated by an anisotropic superconducting bar with critical current density Jc=Ic/2aD, where Ic is the critical current of each tape, 2a is the tape width, and D is the tape-to-tape periodicity. The current density J must obey the constraint \int J dx = I/D, where the tapes lie parallel to the x axis and are stacked along the z axis. We suppose that Jc is independent of field (Bean approximation) and look for a solution to the critical state for arbitrary height 2b of the stack. For c<|x|<a we have J=Jc, and for |x|<c the critical state requires that Bz=0. We show that this implies \partial J/\partial x=0 in the central region. Setting c as a constant (independent of z) results in field profiles remarkably close to the desired one (Bz=0 for |x|<c) as long as the aspect ratio b/a is not too small. We evaluate various criteria for choosing c, and we show that the calculated hysteretic losses depend only weakly on how c is chosen. We argue that for small D/a the anisotropic homogeneous-medium approximation gives a reasonably accurate estimate of the ac losses in a finite Z stack. The results for a Z stack can be used to calculate the transport losses in a pancake coil wound with superconducting tape.Comment: 21 pages, 17 figures, accepted by Supercond. Sci. Techno

    Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance

    Full text link
    A liquid isooctane (C8_{8}H18_{18}) filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm ×\times 1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles like those present in Intensity Modulated Radiation Therapy (IMRT) and radiosurgery. As read-out electronics we use the X-Ray Data Acquisition System (XDAS) with the Xchip developed by the CCLRC. Studies concerning the collection efficiency dependence on the polarization voltage and on the dose rate have been made in order to optimize the device operation. In the first tests we have studied dose rate and energy dependences, and signal reproducibility. Dose rate dependence was found lower than 2.5 % up to 5 Gy min−1^{-1}, and energy dependence lower than 2.1 % up to 20 cm depth in solid water. Output factors and penumbras for several rectangular fields have been measured with the linear array and were compared with the results obtained with a 0.125 cm3^{3} air ionization chamber and radiographic film, respectively. Finally, we have acquired profiles for an IMRT field and for a virtual wedge. These profiles have also been compared with radiographic film measurements. All the comparisons show a good correspondence. Signal reproducibility was within a 2% during the test period (around three months). The device has proved its capability to verify on-line therapy beams with good spatial resolution and signal to noise ratio.Comment: 16 pages, 12 figures Submitted to Phys. Med. Bio

    Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field

    Full text link
    The case of a hard type II superconductor in the form of strip with elliptic cross-section when placed in transverse magnetic field is studied. We approach the problem in two steps, both based on the critical-state model. First we calculate numerically the penetrated current profiles that ensure complete shielding in the interior, without assuming an a priori form for the profiles. In the second step we introduce an analytical approximation that asumes that the current profiles are ellipses. Expressions linking the sample magnetization to the applied field are derived covering the whole range of applied fields. The theoretical predictions are tested by the comparison with experimental data for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure

    Personal data broker instead of blockchain for students’ data privacy assurance

    Get PDF
    Data logs about learning activities are being recorded at a growing pace due to the adoption and evolution of educational technologies (Edtech). Data analytics has entered the field of education under the name of learning analytics. Data analytics can provide insights that can be used to enhance learning activities for educational stakeholders, as well as helping online learning applications providers to enhance their services. However, despite the goodwill in the use of Edtech, some service providers use it as a means to collect private data about the students for their own interests and benefits. This is showcased in recent cases seen in media of bad use of students’ personal information. This growth in cases is due to the recent tightening in data privacy regulations, especially in the EU. The students or their parents should be the owners of the information about them and their learning activities online. Thus they should have the right tools to control how their information is accessed and for what purposes. Currently, there is no technological solution to prevent leaks or the misuse of data about the students or their activity. It seems appropriate to try to solve it from an automation technology perspective. In this paper, we consider the use of Blockchain technologies as a possible basis for a solution to this problem. Our analysis indicates that the Blockchain is not a suitable solution. Finally, we propose a cloud-based solution with a central personal point of management that we have called Personal Data Broker.Peer ReviewedPostprint (author's final draft

    Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    Get PDF
    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH)2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formedThanks to the MCYT for the financial support given to this work (Project MAT2006-13179-C02-01-02)Peer reviewe
    • …
    corecore