5,610 research outputs found
Angular-planar CMB power spectrum
Gaussianity and statistical isotropy of the Universe are modern cosmology's
minimal set of hypotheses. In this work we introduce a new statistical test to
detect observational deviations from this minimal set. By defining the
temperature correlation function over the whole celestial sphere, we are able
to independently quantify both angular and planar dependence (modulations) of
the CMB temperature power spectrum over different slices of this sphere. Given
that planar dependence leads to further modulations of the usual angular power
spectrum , this test can potentially reveal richer structures in the
morphology of the primordial temperature field. We have also constructed an
unbiased estimator for this angular-planar power spectrum which naturally
generalizes the estimator for the usual 's. With the help of a chi-square
analysis, we have used this estimator to search for observational deviations of
statistical isotropy in WMAP's 5 year release data set (ILC5), where we found
only slight anomalies on the angular scales and . Since this
angular-planar statistic is model-independent, it is ideal to employ in
searches of statistical anisotropy (e.g., contaminations from the galactic
plane) and to characterize non-Gaussianities.Comment: Replaced to match the published version. Journal-ref: Phys.Rev. D80
063525 (2009
Implementation of optimal phase-covariant cloning machines
The optimal phase covariant cloning machine (PQCM) broadcasts the information
associated to an input qubit into a multi-qubit systems, exploiting a partial
a-priori knowledge of the input state. This additional a priori information
leads to a higher fidelity than for the universal cloning. The present article
first analyzes different experimental schemes to implement the 1->3 PQCM. The
method is then generalized to any 1->M machine for odd value of M by a
theoretical approach based on the general angular momentum formalism. Finally
different experimental schemes based either on linear or non-linear methods and
valid for single photon polarization encoded qubits are discussed.Comment: 7 pages, 3 figure
N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature
We investigate the large N reduced model of gauge theory on a curved
spacetime through the plane wave matrix model. We formally derive the action of
the N=4 supersymmetric Yang-Mills theory on R \times S^3 from the plane wave
matrix model in the large N limit. Furthermore, we evaluate the effective
action of the plane wave matrix model up to the two-loop level at finite
temperature. We find that the effective action is consistent with the free
energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature
limit where the planar contributions dominate. We conclude that the plane wave
matrix model can be used as a large N reduced model to investigate
nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \times
S^3.Comment: 31pages: added comments and reference
Noncommuting spherical coordinates
Restricting the states of a charged particle to the lowest Landau level
introduces a noncommutativity between Cartesian coordinate operators. This idea
is extended to the motion of a charged particle on a sphere in the presence of
a magnetic monopole. Restricting the dynamics to the lowest energy level
results in noncommutativity for angular variables and to a definition of a
noncommuting spherical product. The values of the commutators of various
angular variables are not arbitrary but are restricted by the discrete
magnitude of the magnetic monopole charge. An algebra, isomorphic to angular
momentum, appears. This algebra is used to define a spherical star product.
Solutions are obtained for dynamics in the presence of additional angular
dependent potentials.Comment: 5 pages, RevTex4 fil
SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices
Recently Pluhar and Weidenmueller [Ann. Phys. (N.Y.) Vol 297, 344 (2002)]
showed that the eigenvectors of the matrix of second moments of embedded
Gaussian unitary ensemble of random matrices generated by k-body interactions
(EGUE(k)) for m fermions in N single particle states are SU(N) Wigner
coefficients and derived also an expression for the eigenvalues. Going beyond
this work, we will show that the eigenvalues of this matrix are square of a
SU(N) Racah coefficient and thus the matrix of second moments of EGUE(k) is
solved completely by SU(N) Wigner-Racah algebra.Comment: 16 page
Rotational States of Magnetic Molecules
We study a magnetic molecule that exhibits spin tunneling and is free to
rotate about its anisotropy axis. Exact low-energy eigenstates of the molecule
that are superpositions of spin and rotational states are obtained. We show
that parameter determines the ground state of
the molecule. Here is the spin, is the moment of inertia, and
is the tunnel splitting. The magnetic moment of the molecule is zero
at . At the spin of the molecule localizes in one of
the directions along the anisotropy axis.Comment: 4 pages, 3 figure
Virtual Resonant States in Two-Photon Decay Processes: Lower-Order Terms, Subtractions, and Physical Interpretations
We investigate the two-photon decay rate of a highly excited atomic state
which can decay to bound states of lower energy via cascade processes. We show
that a naive treatment of the process, based on the introduction of
phenomenological decay rates for the intermediate, resonant states, leads to
lower-order terms which need to be subtracted in order to obtain the coherent
two-photon correction to the decay rate. The sum of the lower-order terms is
exactly equal to the one-photon decay rate of the initial state, provided the
naive two-photon decay rates are summed over all available two-photon channels.
A quantum electrodynamics (QED) treatment of the problem leads to an
"automatic" subtraction of the lower-order terms.Comment: 8 pages, RevTe
Optimal measurement precision of a nonlinear interferometer
We study the best attainable measurement precision when a double-well trap
with bosons inside acts as an interferometer to measure the energy difference
of the atoms on the two sides of the trap. We introduce time independent
perturbation theory as the main tool in both analytical arguments and numerical
computations. Nonlinearity from atom-atom interactions will not indirectly
allow the interferometer to beat the Heisenberg limit, but in many regimes of
the operation the Heisenberg limit scaling of measurement precision is
preserved in spite of added tunneling of the atoms and atom-atom interactions,
often even with the optimal prefactor.Comment: very close to published versio
Lamb Shift in Muonic Hydrogen
The Lamb shift in muonic hydrogen continues to be a subject of experimental
and theoretical investigation. Here my older work on the subject is updated to
provide a complementary calculation of the energies of the 2p-2s transitions in
muonic hydrogen.Comment: 15 pages, no figures. 2 small misprints corrected. Published in Phys.
Rev.
Probing anisotropies of gravitational-wave backgroundswith a space-based interferometer II: Perturbative reconstruction of a low-frequency skymap
We present a perturbative reconstruction method to make a skymap of
gravitational-wave backgrounds (GWBs) observed via space-based interferometer.
In the presence of anisotropies in GWBs, the cross-correlated signals of
observed GWBs are inherently time-dependent due to the non-stationarity of the
gravitational-wave detector. Since the cross-correlated signal is obtained
through an all-sky integral of primary signals convolving with the antenna
pattern function of gravitational-wave detectors, the non-stationarity of
cross-correlated signals, together with full knowledge of antenna pattern
functions, can be used to reconstruct an intensity map of the GWBs. Here, we
give two simple methods to reconstruct a skymap of GWBs based on the
perturbative expansion in low-frequency regime. The first one is based on
harmonic-Fourier representation of data streams and the second is based on
"direct" time-series data. The latter method enables us to create a skymap in a
direct manner. The reconstruction technique is demonstrated in the case of the
Galactic gravitational wave background observed via planned space
interferometer, LISA. Although the angular resolution of low-frequency skymap
is rather restricted, the methodology presented here would be helpful in
discriminating the GWBs of galactic origins by those of the extragalactic
and/or cosmological origins.Comment: 23 pages, 12 figures, Phys.Rev.D (2005) in pres
- …
