15 research outputs found

    Vortex lattices in strong type-II superconducting two-dimensional strips

    Full text link
    We show how to calculate semi-analytically the dense vortex state in strong type-II superconducting nanostructures. For the specific case of a strip, we find vortex lattice solutions which also incorporate surface superconductivity. We calculate the energy cost to displace individual vortex rows parallel to the surfaces and find that this energy oscillates with the magnetic field. Remarkably, we also find that, at a critical field HH^* below Hc2H_{c2}, this ''shear'' energy becomes strictly zero for the surface rows due to an unexpected mismatch with the bulk lattice.Comment: Title, abstract, and some text paragraphs have been rewritte

    Mode locking of vortex matter driven through mesoscopic channels

    Get PDF
    We investigated the driven dynamics of vortices confined to mesoscopic flow channels by means of a dc-rf interference technique. The observed mode-locking steps in the IVIV-curves provide detailed information on how the number of rows and lattice structure in the channel change with magnetic field. Minima in flow stress occur when an integer number of rows is moving coherently, while maxima appear when incoherent motion of mixed nn and n±1n\pm 1 row configurations is predominant. Simulations show that the enhanced pinning at mismatch originates from quasi-static fault zones with misoriented edge dislocations induced by disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Incommensuration Effects and Dynamics in Vortex Chains

    Full text link
    We examine the motion of one-dimensional (1D) vortex matter embedded in a 2D vortex system with weak pinning using numerical simulations. We confirm the conjecture of Matsuda et al. [Science 294, 2136 (2001)] that the onset of the temperature induced motion of the chain is due to an incommensuration effect of the chain with the periodic potential created by the bulk vortices. In addition, under an applied driving force we find a two stage depinning transition, where the initial depinning of the vortex chain occurs through soliton like pulses. When an ac drive is added to the dc drive, we observe phase locking of the moving vortex chain.Comment: 4 pages, 4 postscript figure

    Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films

    Full text link
    Low-angle grain boundaries with misorientation angles theta < 5 degrees in optimally doped thin films of YBCO are investigated by magnetooptical imaging. By using a numerical inversion scheme of Biot-Savart's law the critical current density across the grain boundary can be determined with a spatial resolution of about 5 micrometers. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies with varying local flux density. Combining the corresponding flux and current pattern it is found that there exists a universal dependency of the grain boundary current on the local flux density. A change in the local flux density means a variation in the flux line-flux line distance. With this knowledge a model is developped that explains the flux-current relation by means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure

    Directional vortex motion guided by artificially induced mesoscopic potentials

    Get PDF
    Rectangular pinning arrays of Ni dots define a potential landscape for vortex motion in Nb films. Magnetotransport experiments in which two in-plane orthogonal electrical currents are injected simultaneously allow selecting the direction and magnitude of the Lorentz force on the vortex-lattice, thus providing the angular dependence of the vortex motion. The background dissipation depends on angle at low magnetic fields, which is progressively smeared out with increasing field. The periodic potential locks in the vortex motion along channeling directions. Because of this, vortex-lattice direction of motion is up to 85o away from the applied Lorentz force direction.Comment: PDF file includes figure

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments

    Get PDF
    The flow properties of confined vortex matter driven through disordered mesoscopic channels are investigated by mode locking (ML) experiments. The observed ML effects allow to trace the evolution of both the structure and the number of confined rows and their match to the channel width as function of magnetic field. From a detailed analysis of the ML behavior for the case of 3-rows we obtain ({\it i}) the pinning frequency fpf_p, ({\it ii}) the onset frequency fcf_c for ML (\propto ordering velocity) and ({\it iii}) the fraction LML/LL_{ML}/L of coherently moving 3-row regions in the channel. The field dependence of these quantities shows that, at matching, where LMLL_{ML} is maximum, the pinning strength is small and the ordering velocity is low, while at mismatch, where LMLL_{ML} is small, both the pinning force and the ordering velocity are enhanced. Further, we find that fcfp2f_c \propto f_p^2, consistent with the dynamic ordering theory of Koshelev and Vinokur. The microscopic nature of the flow and the ordering phenomena will also be discussed.Comment: 10 pages, 7 figure, submitted to PRB. Discussion has been improved and a figure has been adde

    Matching and surface barrier effects of the flux-line lattice in superconducting films and multilayers.

    Get PDF
    The flux-line lattice dissipation and the pinning force of Bi2Sr2CaCu2O8 and YBa2Cu3O7 films and a Nb/Cu multilayer are investigated with the vibrating reed technique. In magnetic fields oriented under a small angle with respect to the film surfaces the Bi-2:2:1:2 film shows a series of pronounced dissipation maxima at matching fields BN in the irreversible region of the magnetic phase diagram. The Y-1:2:3 film shows tiny damping maxima, whereas no structure in the dissipation of the Nb/Cu multilayer is detected below the upper critical field. The comparison of the matching fields to an anisotropic London model shows that the dissipation maxima are caused by rearrangements of the flux-line lattice configuration due to interactions with the sample surface. The different behavior of the high-temperature superconductors and the Nb/Cu multilayer is understood by explicitly taking the surface barrier into account. Deviations from the surface induced commensurability of the flux-line lattice due to the intrinsic pinning are discussed. Our results indicate that pancake vortices in the Bi-2:2:1:2 film should be coupled below the irreversibility line and below magnetic fields B??0.5 T perpendicular to the film surface
    corecore