38 research outputs found

    Protective Effects of Tetrahydrocurcumin and Curcumin against Doxorubicin and Cadmium-Induced Cytotoxicity in Chang Liver Cells

    Get PDF
    Purpose: To investigate the cytoprotective effect of tetrahydrocurcumin, (THC) and curcumin (CUR) on cytotoxicity induced by doxorubicin and cadmium in Chang liver cells.Methods: Cytotoxicity was determined by sulforhodamine B assay. The expression of nuclear  factorerythroid- 2-related factor 2 (Nrf2) Nrf2 regulated  cytoprotecetive enzymes, glutamylcysteine ligase catalytic subunit (GCLC) and NADP (H): quinone oxidoreductase1 (NQO1) was determined by Western blot  analysis. Nuclear translocation of Nrf-2 was analyzed by immunofluorescence method. The level of superoxide formation was assayed by chemiluminescence  method.Results: Treatment with THC or CUR significantly induced GCLC and NQO1 expression and the nuclear translocation of Nrf2. Exposure to doxorubicin (DOX) or Cd for 24 h induced cell death of about 50 %.  However, pre-treatment with THC or CUR (1 or 6 μM) for 24 h significantly increased cell survival to 80 or 90 %,  respectively (p < 0.05). Similar pre-treatment with THC or CUR significantly protected against Cd-induced cell death by a level of 80 and 85 %, respectively (p < 0.05). The cytoprotective effect of these compounds was associated with suppressed DOX- and Cd-induced superoxide formation and induction of GCLC and NQO1 expression.Conclusions: THC mediates its effects by activation of Nrf2 and its regulated enzymes, GCLC and NQO1. Induction of GCLC, NQO1 protein expression and suppression of superoxide are associated with the cytoprotective effect.Keywords: Chang hepatocyte, Curcumin, Tetrahydrocurcumin, Cytoprotection, Doxorubicin, Cadmiu

    Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD(+/- )mice

    Get PDF
    BACKGROUND: Chronic therapy with nitroglycerin (GTN) results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS). According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) play an important role for the development of nitrate and cross-tolerance. METHODS: Tolerance was induced by infusion of wild type (WT) and heterozygous manganese superoxide dismutase mice (Mn-SOD(+/-)) with ethanolic solution of GTN (12.5 μg/min/kg for 4 d). For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d) was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2) activity was measured in isolated heart mitochondria. RESULTS: Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh), increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD(+/- )mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD(+/- )mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. CONCLUSION: Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance

    Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isothiocyanates are natural compounds found in consumable cruciferous vegetables. They have been shown to inhibit chemical carcinogenesis by a wide variety of chemical carcinogens in animal models. Recent studies have also shown that isothiocyanates have antitumor activity, inhibiting the growth of several types of cultured human cancer cells. Our previous study showed that PEITC inhibited human leukemia cells growth by inducing apoptosis. However, the effect of isothiocyanates on lung cancer cell metastasis has not been studied. In the present study, we investigated the inhibitory effects of BITC and PEITC on metastatic potential of highly metastatic human lung cancer L9981 cells.</p> <p>Methods</p> <p>Cell migration and invasion were measured by wound healing assay and transwell chemotaxis assay. Expression of metastasis-related genes was assessed by quantitative RT-PCR and Western blotting. The mechanisms of action were evaluated by flow cytometry, reporter assay and Western blotting.</p> <p>Results</p> <p>Our data showed that both BITC and PEITC inhibited L9981 cell growth in a dose-dependent manner, the IC50 values were 5.0 and 9.7 μM, respectively. Cell migrations were reduced to 8.1% and 16.5% of control, respectively; and cell invasions were reduced to 2.7% and 7.3% of control, respectively. Metastasis-related genes MMP-2, Twist and β-catenin were also modulated. BITC and PEITC inhibited cell survival signaling molecules Akt and NFκB activation. Moreover, BITC and PEITC increased ROS generation and caused GSH depletion. Pretreatment with NAC blocked BITC and PEITC induced ROS elevation and NFκB inhibition.</p> <p>Conclusion</p> <p>Our results indicated that BITC and PEITC suppress lung cancer cell metastasis potential by modulation of metastasis-related gene expression, inhibition of Akt/NFκB pathway. Induction of oxidative stress may play an important role.</p

    Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer

    Get PDF
    The role of oxidative stress in prostate cancer has been increasingly recognised. Acute and chronic inflammations generate reactive oxygen species that result in damage to cellular structures. Haeme oxygenase-1 (HO-1) has cytoprotective effects against oxidative damage. We hypothesise that modulation of HO-1 expression may be involved in the process of prostate carcinogenesis and prostate cancer progression. We thus studied HO-1 expression and localisation in 85 samples of organ-confined primary prostate cancer obtained via radical prostatectomy (Gleason grades 4–9) and in 39 specimens of benign prostatic hyperplasia (BPH). We assessed HO-1 expression by immunohistochemical staining. No significant difference was observed in the cytoplasmic positive reactivity among tumours (84%), non-neoplastic surrounding parenchyma (89%), or BPH samples (87%) (P=0.53). Haeme oxygenase-1 immunostaining was detected in the nuclei of prostate cancer cells in 55 of 85 (65%) patients but less often in non-neoplastic surrounding parenchyma (30 of 85, 35%) or in BPH (9 of 39, 23%) (P<0.0001). Immunocytochemical and western blot analysis showed HO-1 only in the cytoplasmic compartment of PC3 and LNCaP prostate cancer cell lines. Treatment with hemin, a well-known specific inducer of HO-1, led to clear nuclear localisation of HO-1 in both cell lines and highly induced HO-1 expression in both cellular compartments. These findings have demonstrated, for the first time, that HO-1 expression and nuclear localisation can define a new subgroup of prostate cancer primary tumours and that the modulation of HO-1 expression and its nuclear translocation could represent new avenues for therapy

    Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis

    Get PDF
    Many studies have implicated nuclear factor E2-related factor 2 (Nrf2) and nuclear factor-κB1 (Nfkb1) in inflammation and cancer. However, the regulatory potential for crosstalk between these two important transcription factors in inflammation and carcinogenesis has not been explored. To delineate conserved transcription factor-binding site signatures, we performed bioinformatic analyses on the promoter regions of human and murine Nrf2 and Nfkb1. We performed multiple sequence alignment of Nrf2 and Nfkb1 genes in five mammalian species – human, chimpanzee, dog, mouse and rat – to explore conserved biological features. We constructed a canonical regulatory network for concerted modulation of Nrf2 and Nfkb1 involving several members of the mitogen-activated protein kinase (MAPK) family and present a putative model for concerted modulation of Nrf2 and Nfkb1 in inflammation/carcinogenesis. Our results reflect potential for putative crosstalk between Nrf2 and Nfkb1 modulated through the MAPK cascade that may influence inflammation-associated etiopathogenesis of cancer. Taken together, the elucidation of potential relationships between Nrf2 and Nfkb1 may help to better understand transcriptional regulation, as well as transcription factor networks, associated with the etiopathogenesis of inflammation and cancer

    Novel Molecular Targets of Azadirachta indica Associated with Inhibition of Tumor Growth in Prostate Cancer

    Get PDF
    Advanced prostate cancer has significant long-term morbidity, and there is a growing interest in alternative and complimentary forms of therapy that will improve the outcomes of patients. Azadirachta indica (common name: neem) contains multiple active compounds that have potent anti-inflammatory and anticancer properties. The present study investigates the novel targets of the anticancer activity of ethanol extract of neem leaves (EENL) in vitro and evaluates the in vivo efficacy in the prostate cancer models. Analysis of the components in the EENL by mass spectrometry suggests the presence of 2′,3′-dehydrosalannol, 6-desacetyl nimbinene, and nimolinone. Treatment of C4-2B and PC-3M-luc2 prostate cancer cells with EENL inhibited the cell proliferation. Genome-wide expression profiling, using oligonucleotide microarrays, revealed genes differentially expressed with EENL treatment in prostate cancer cells. Functional analysis unveiled that most of the up-regulated genes were associated with cell death, and drug metabolism, and the down-regulated genes were associated with cell cycle, DNA replication, recombination, and repair functions. Quantitative PCR confirmed significant up-regulation of 40 genes and immunoblotting revealed increase in the protein expression levels of HMOX1, AKR1C2, AKR1C3, and AKR1B10. EENL treatment inhibited the growth of C4-2B and PC-3M-luc2 prostate cancer xenografts in nude mice. The suppression of tumor growth is associated with the formation of hyalinized fibrous tumor tissue and the induction of cell death by apoptosis. These results suggest that EENL-containing natural bioactive compounds could have potent anticancer property and the regulation of multiple cellular pathways could exert pleiotrophic effects in prevention and treatment of prostate cancer

    Anti-inflammatory/Anti-oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum zawadskii and Licorice Glycyrrhiza uralensis

    No full text
    Accumulating evidence from epidemiological studies indicates that chronic inflammation and oxidative stress play critical roles in neoplastic development. The aim of this study was to investigate the anti-inflammatory, anti-oxidative stress activities, and differential regulation of Nrf2-mediated genes by tea Chrysanthemum zawadskii (CZ) and licorice Glycyrrhiza uralensis (LE) extracts. The anti-inflammatory and anti-oxidative stress activities of hexane/ethanol extracts of CZ and LE were investigated using in vitro and in vivo approaches, including quantitative real-time PCR (qPCR) and microarray. Additionally, the role of the transcriptional factor Nrf2 (nuclear erythroid-related factor 2) signaling pathways was examined. Our results show that CZ and LE extracts exhibited potent anti-inflammatory activities by suppressing the mRNA and protein expression levels of pro-inflammatory biomarkers IL-1β, IL-6, COX-2 and iNOS in LPS-stimulated murine RAW 264.7 macrophage cells. CZ and LE also significantly suppressed the NO production of LPS-stimulated RAW 264.7 cells. Additionally, CZ and LE suppressed the NF-κB luciferase activity in human HT-29 colon cancer cells. Both extracts also showed strong Nrf2-mediated antioxidant/Phase II detoxifying enzymes induction. CZ and LE induced NQO1, Nrf2, and UGT and antioxidant response element (ARE)-luciferase activity in human hepatoma HepG2 C8 cells. Using Nrf2 knockout [Nrf2 (−/−)] and Nrf2 wild-type (+/+) mice, LE and CZ showed Nrf2-dependent transactivation of Nrf2-mediated antioxidant and phase II detoxifying genes. In summary, CZ and LE possess strong inhibitory effects against NF-κB-mediated inflammatory as well as strong activation of the Nrf2-ARE-anti-oxidative stress signaling pathways, which would contribute to their overall health promoting pharmacological effects against diseases including cancer
    corecore