16 research outputs found

    An Exact Formula for the Average Run Length to False Alarm of the Generalized Shiryaev-Roberts Procedure for Change-Point Detection under Exponential Observations

    Full text link
    We derive analytically an exact closed-form formula for the standard minimax Average Run Length (ARL) to false alarm delivered by the Generalized Shiryaev-Roberts (GSR) change-point detection procedure devised to detect a shift in the baseline mean of a sequence of independent exponentially distributed observations. Specifically, the formula is found through direct solution of the respective integral (renewal) equation, and is a general result in that the GSR procedure's headstart is not restricted to a bounded range, nor is there a "ceiling" value for the detection threshold. Apart from the theoretical significance (in change-point detection, exact closed-form performance formulae are typically either difficult or impossible to get, especially for the GSR procedure), the obtained formula is also useful to a practitioner: in cases of practical interest, the formula is a function linear in both the detection threshold and the headstart, and, therefore, the ARL to false alarm of the GSR procedure can be easily computed.Comment: 9 pages; Accepted for publication in Proceedings of the 12-th German-Polish Workshop on Stochastic Models, Statistics and Their Application

    Numerical Comparison of Cusum and Shiryaev-Roberts Procedures for Detecting Changes in Distributions

    Full text link
    The CUSUM procedure is known to be optimal for detecting a change in distribution under a minimax scenario, whereas the Shiryaev-Roberts procedure is optimal for detecting a change that occurs at a distant time horizon. As a simpler alternative to the conventional Monte Carlo approach, we propose a numerical method for the systematic comparison of the two detection schemes in both settings, i.e., minimax and for detecting changes that occur in the distant future. Our goal is accomplished by deriving a set of exact integral equations for the performance metrics, which are then solved numerically. We present detailed numerical results for the problem of detecting a change in the mean of a Gaussian sequence, which show that the difference between the two procedures is significant only when detecting small changes.Comment: 21 pages, 8 figures, to appear in Communications in Statistics - Theory and Method

    Online change detection in exponential families with unknown parameters

    Get PDF
    International audienceThis paper studies online change detection in exponential families when both the parameters before and after change are unknown. We follow a standard statistical approach to sequential change detection with generalized likelihood ratio test statistics. We interpret these statistics within the framework of information geometry, hence providing a unified view of change detection for many common statistical models and corresponding distance functions. Using results from convex duality, we also derive an efficient scheme to compute the exact statistics sequentially, which allows their use in online settings where they are usually approximated for the sake of tractability. This is applied to real-world datasets of various natures, including onset detection in audio signals

    A note on the quasi-stationary distribution of the shiryaev martingale on the positive half-line

    No full text
    We obtain a closed-form formula for the quasi-stationary distribution of the classical Shiryaev martingale diffusion considered on the positive half-line [A, +∞) withA>0 fixed; the state space’s left endpoint is assumed to be the killing boundary. The formula is obtained analytically as the solution of the appropriate singular Sturm–Liouville problem; the latter was first considered in section 7.8.2 of [P. Collet, S. Martínez, and J. San Martín, Quasi-Stationary Distributions. Markov Chains, Diffusions and Dynamical Systems, Springer, Heidelberg, 2013] but has heretofore remained unsolved

    Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data

    No full text
    International audienceWe consider the quickest change-point detection problem in pointwise and minimax settings for general dependent data models. Two new classes of sequential detection procedures associated with the maximal "local" probability of a false alarm within a period of some fixed length are introduced. For these classes of detection procedures, we consider two popular risks: the expected positive part of the delay to detection and the conditional delay to detection. Under very general conditions for the observations, we show that the popular Shiryaev-Roberts procedure is asymptotically optimal, as the local probability of false alarm goes to zero, with respect to both these risks pointwise (uniformly for every possible point of change) and in the minimax sense (with respect to maximal over point of change expected detection delays). The conditions are formulated in terms of the rate of convergence in the strong law of large numbers for the log-likelihood ratios between the "change" and "no-change" hypotheses, specifically as a uniform complete convergence of the normalized log-likelihood ratio to a positive and finite number. We also develop tools and a set of sufficient conditions for verification of the uniform complete convergence for a large class of Markov processes. These tools are based on concentration inequalities for functions of Markov processes and the Meyn-Tweedie geometric ergodic theory. Finally, we check these sufficient conditions for a number of challenging examples (time series) frequently arising in applications, such as autoregression, autoregressive GARCH, etc
    corecore