299 research outputs found

    Embedded plasmonic waveguides with Yagi-style antennas

    Get PDF
    High confinement in plasmonic waveguides usually comes along with high loss. We present experiments on a new approach, which allows to tune adiabatically between high confinement and low loss waveguides, connected to optical Yagi-style antennas

    Functional plasmonic nanocircuits with low insertion and propagation losses

    Get PDF
    We experimentally demonstrate plasmonic nanocircuits operating as subdiffraction directional couplers optically excited with high efficiency from free-space using optical Yagi-Uda style antennas at λ_0 = 1550 nm. The optical Yagi-Uda style antennas are designed to feed channel plasmon waveguides with high efficiency (45% in coupling, 60% total emission), narrow angular directivity (<40°), and low insertion loss. SPP channel waveguides exhibit propagation lengths as large as 34 μm with adiabatically tuned confinement and are integrated with ultracompact (5 × 10 μm^2), highly dispersive directional couplers, which enable 30 dB discrimination over Δλ = 200 nm with only 0.3 dB device loss

    Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas

    Full text link
    We experimentally demonstrate the coupling of far-field light to highly confined plasmonic gap modes via connected nanoantennas. The excitation of plasmonic gap modes is shown to depend on the polarization, position and wavelength of the incident beam. Far-field measurements performed in crossed polarization allow for the detection of extremely weak signals re-emitted from gap waveguides and can increase the signal-to-noise ratio dramatically.Comment: 5 figures; http://apl.aip.org

    Expression of heterologous proteins flanked by NS3-4A cleavage sites within the hepatitis C virus polyprotein

    Get PDF
    AbstractHepatitis C virus (HCV) contributes substantially to human morbidity and mortality world-wide. The development of HCV genomes expressing heterologous proteins has enhanced the ability to study viral infection, but existing systems have drawbacks. Recombinant viruses often require adaptive mutations to compensate for reduced viral titers, or rely on an artificial genomic organization that uncouples viral protein expression from recombinant gene expression. Here, we sought to exploit the viral polyprotein processing machinery to express heterologous proteins within the context of the HCV polyprotein. We show that HCV genotypes 2a and 1b permit insertion of reporter proteins between NS5A and NS5B with minimal impact on viral fitness. Using this strategy we constructed reporter genomes exhibiting a wide dynamic range, simplifying analysis of HCV infection in primary hepatocytes. Expression of heterologous proteins within the HCV genome offers new opportunities to analyze HCV infection in experimental systems without perturbing functions of individual viral proteins

    Recapitulation of the hepatitis C virus life-cycle in engineered murine cell lines

    Get PDF
    AbstractHepatitis C virus (HCV) remains a major medical problem. In-depth study of HCV pathogenesis and immune responses is hampered by the lack of suitable small animal models. The narrow host range of HCV remains incompletely understood. We demonstrate that the entire HCV life-cycle can be recapitulated in mouse cells. We show that antiviral signaling interferes with HCV RNA replication in mouse cells. We were able to infect mouse cells expressing human CD81 and occludin (OCLN)—the minimal set of entry factor factors required for HCV uptake into mouse cells. Infected mouse cells sustain HCV RNA replication in the presence of miR122 and release infectious particles when mouse apoE is supplied. Our data demonstrate that the barriers of HCV interspecies transmission can be overcome by engineering a suitable cellular environment and provide a blue-print towards constructing a small animal model for HCV infection

    Über Wasserstoffbrücken, VII. Die Struktur von 6-Hydrozy-fulven- oder Cyclopentadien-aldehyden

    Get PDF
    IR-und NMR-Spektren zeigen, daß eine Aldehyd- oder Ketogruppe am Cyclopentadien nicht ausreicht, um die tautomere 6- Hydroxy-fulven-Struktur zu stabilisieren. Bietet jedoch eine zweite Aldehydgruppe in der Nachbarstellung die Möglichkeit zu einer sehr festen intramolekularen Wasserstoffbrücke, so wird ausschließlich die 6-Hydroxy-fulven-aldehyd-(1)-Form ausgebildet. Die Struktur von 6-Amino -fulven-aldehyd-Derivaten wird ebenfalls aus den Spektren abgeleitet

    Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions

    Get PDF
    __Background:__ Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as a-amylases, leads to induction of the secretion stress-responsive CssR-CssS regulatory system, resulting in up-regulation of the HtrA and HtrB proteases. These proteases degrade misfolded proteins secreted via the Sec pathway, resulting in a loss of product. The aim of this study was to investigate the secretion stress response in B. subtilis 168 cells overproducing the industrially relevant a-amylase AmyM from Geobacillus stearothermophilus, which was expressed from the strong promoter P(amyQ)-M. __Results:__ Here we show that activity of the htrB promoter as induced by overproduction of AmyM was "noisy", which is indicative for heterogeneous activation of the secretion stress pathway. Plasmids were constructed to allow real-time analysis of P(amyQ)-M promoter activity and AmyM production by, respectively, transcriptional and outof- frame translationally coupled fusions with gfpmut3. Our results show the emergence of distinct sub-populations of high- and low-level AmyM-producing cells, reflecting heterogeneity in the activity of P(amyQ)-M. This most likely explains the heterogeneous secretion stress response. Importantly, more homogenous cell populations with regard to P(amyQ)-M activity were observed for the B. subtilis mutant strain 168degUhy32, and the wild-type strain 168 under optimized growth conditions. __Conclusion:__ Expression heterogeneity of secretory proteins in B. subtilis can be suppressed by degU mutation and optimized growth conditions. Further, the out-of-frame translational fusion of a gene for a secreted target protein and gfp represents a versatile tool for real-time monitoring of protein production and opens novel avenues for Bacillus production strain improvement

    Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Get PDF
    Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV
    • …
    corecore