96 research outputs found

    A Speculative Parallel Algorithm for Self-Organizing Maps

    Get PDF

    Proteopathogen, a protein database to study host-pathogen interaction

    Get PDF
    Comunicaciones a congreso

    Comparison of molecular dynamics and superfamily spaces of protein domain deformation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space).</p> <p>Results</p> <p>Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases.</p> <p>Conclusion</p> <p>Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or <it>ab initio </it>protein folding.</p

    CentrosomeDB: a human centrosomal proteins database

    Get PDF
    Active research on the biology of the centrosome during the past decades has allowed the identification and characterization of many centrosomal proteins. Unfortunately, the accumulated data is still dispersed among heterogeneous sources of information. Here we present centrosome:db, which intends to compile and integrate relevant information related to the human centrosome. We have compiled a set of 383 likely human centrosomal genes and recorded the associated supporting evidences. Centrosome:db offers several perspectives to study the human centrosome including evolution, function and structure. The database contains information on the orthology relationships with other species, including fungi, nematodes, arthropods, urochordates and vertebrates. Predictions of the domain organization of centrosome:db proteins are graphically represented at different sections of the database, including sets of alternative protein isoforms, interacting proteins, groups of orthologs and the homologs identified with blast. Centrosome:db also contains information related to function, gene–disease associations, SNPs and the 3D structure of proteins. Apart from important differences in the coverage of the set of centrosomal genes, our database differentiates from other similar initiatives in the way information is treated and analyzed. Centrosome:db is publicly available at http://centrosome.dacya.ucm.es

    bioNMF: a versatile tool for non-negative matrix factorization in biology

    Get PDF
    BACKGROUND: In the Bioinformatics field, a great deal of interest has been given to Non-negative matrix factorization technique (NMF), due to its capability of providing new insights and relevant information about the complex latent relationships in experimental data sets. This method, and some of its variants, has been successfully applied to gene expression, sequence analysis, functional characterization of genes and text mining. Even if the interest on this technique by the bioinformatics community has been increased during the last few years, there are not many available simple standalone tools to specifically perform these types of data analysis in an integrated environment. RESULTS: In this work we propose a versatile and user-friendly tool that implements the NMF methodology in different analysis contexts to support some of the most important reported applications of this new methodology. This includes clustering and biclustering gene expression data, protein sequence analysis, text mining of biomedical literature and sample classification using gene expression. The tool, which is named bioNMF, also contains a user-friendly graphical interface to explore results in an interactive manner and facilitate in this way the exploratory data analysis process. CONCLUSION: bioNMF is a standalone versatile application which does not require any special installation or libraries. It can be used for most of the multiple applications proposed in the bioinformatics field or to support new research using this method. This tool is publicly available at

    SENT: semantic features in text

    Get PDF
    We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. In addition, the application allows users to rank and explore the articles that best relate to the topics found, helping put the analysis results into context. This approach is useful as an exploratory step in the workflow of interpreting and understanding experimental data, shedding some light into the complex underlying biological mechanisms. This tool provides a user-friendly interface via a web site, and a programmatic access via a SOAP web server. SENT is freely accessible at http://sent.dacya.ucm.es

    GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information

    Get PDF
    GeneCodis is a web server application for functional analysis of gene lists that integrates different sources of information and finds modular patterns of interrelated annotations. This integrative approach has proved to be useful for the interpretation of high-throughput experiments and therefore a new version of the system has been developed to expand its functionality and scope. GeneCodis now expands the functional information with regulatory patterns and user-defined annotations, offering the possibility of integrating all sources of information in the same analysis. Traditional singular enrichment is now permitted and more organisms and gene identifiers have been added to the database. The application has been re-engineered to improve performance, accessibility and scalability. In addition, GeneCodis can now be accessed through a public SOAP web services interface, enabling users to perform analysis from their own scripts and workflows. The application is freely available at http://genecodis.dacya.ucm.e
    corecore