80 research outputs found

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    Secure Communication in Vehicular Networks - PRESERVE Demo

    Get PDF
    Security and privacy are fundamental prerequisites for the deployment of vehicular communications. The near-deployment status of Safety Applications for Intelligent Transport Systems (ITS) calls for strong evidence on the applicability of proposed research solutions, notably close-to-reality situations and field-operational trials. The contribution of our work is in this direction: We present a demonstration of the integration and the interoperability among components and security mechanisms coming from different Research and Development projects, as per the PRESERVE project. In fact, we show that the components of the SeVeCom and EVITA projects with the PRESERVE architecture lead to strong and practical security and privacy solutions for Vehicular Ad-hoc Networks (VANETs)

    A Bandwidth Sharing Approach to Improve Licensed Spectrum Utilization

    Get PDF
    The spectrum of deployed wireless cellular communication systems is found to be underutilized, even though licensed spectrum is at a premium. To efficiently utilize the bandwidth left unused in a cellular system, the primary system (PRI), we propose an overlaid ad hoc secondary network (ASN) architecture, with the ASN operating over the resources left unutilized by the PRI. Our basic design principle is that the ASNoperates in a nonintrusive manner and does not interact with the PRI. In this article we present the ad hoc secondary medium access control (AS-MAC) protocol to enable PRI-SEC interoperation, address a number of technical challenges pertinent to this networking environment, and evaluate the performance of the AS-MAC. In a single-hop ASN the AS-MAC transparently utilizes 75 percent of the bandwidth left unused by the PRI, while in multihop ASNs, due to spatial reuse, the AS-MAC can utilize up to 132 percent of the idle PRI resources in our experiments

    HERMES: Scalable, Secure, and Privacy-Enhancing Vehicle Access System

    Full text link
    We propose HERMES, a scalable, secure, and privacy-enhancing system for users to share and access vehicles. HERMES securely outsources operations of vehicle access token generation to a set of untrusted servers. It builds on an earlier proposal, namely SePCAR [1], and extends the system design for improved efficiency and scalability. To cater to system and user needs for secure and private computations, HERMES utilizes and combines several cryptographic primitives with secure multiparty computation efficiently. It conceals secret keys of vehicles and transaction details from the servers, including vehicle booking details, access token information, and user and vehicle identities. It also provides user accountability in case of disputes. Besides, we provide semantic security analysis and prove that HERMES meets its security and privacy requirements. Last but not least, we demonstrate that HERMES is efficient and, in contrast to SePCAR, scales to a large number of users and vehicles, making it practical for real-world deployments. We build our evaluations with two different multiparty computation protocols: HtMAC-MiMC and CBC-MAC-AES. Our results demonstrate that HERMES with HtMAC-MiMC requires only approx 1,83 ms for generating an access token for a single-vehicle owner and approx 11,9 ms for a large branch of rental companies with over a thousand vehicles. It handles 546 and 84 access token generations per second, respectively. This results in HERMES being 696 (with HtMAC-MiMC) and 42 (with CBC-MAC-AES) times faster compared to in SePCAR for a single-vehicle owner access token generation. Furthermore, we show that HERMES is practical on the vehicle side, too, as access token operations performed on a prototype vehicle on-board unit take only approx 62,087 ms

    A bandwidth sharing approach to improve licensed spectrum utilization

    Full text link

    Carbon Nanotube Dry Spinnable Sheets for Solar Selective Coatings by Lamination

    Get PDF
    Carbon nanotube, oriented free standing sheets can be laminated on any surface as selective solar absorbers while simultaneously dry spun in a highly controlled process from vertically oriented forests grown by CVD. We have found that properties of a CNT forest strongly correlate with the optical transparency and reflectivity of CNT sheets required for solar selective coatings and can be properly tuned for optimal coatings for solar collectors. We study absorptive and emissive properties of CNT sheets that are laminated by a simple automated and controlled process, developed for coating of cylindrical glass tubes for evacuated solar collectors (ETC). The advantages of Joule heating of CNT coatings are demonstrated and test results described, showing a unique property of fast heating as compared to slow heating in conventional solar water heaters

    An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks

    Full text link
    [EN] Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel times in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one secondThis work was partially supported by the "Ministerio de Economia y Competividad, Programa Estatal de Investigacion, Desarollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014", Spain, under Grant Nos. TEC2014-52690-R and BES-2015-075988.Hadiwardoyo, SA.; Patra, S.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks. Journal of Computer Science and Technology. 33(2):249-262. https://doi.org/10.1007/s11390-018-1817-4S249262332Papadimitratos P, De La Fortelle A, Evenssen K, Brignolo R, Cosenza S. Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 2009, 47(11): 84-95.Gerla M, Kleinrock L. Vehicular networks and the future of the mobile Internet. Computer Networks, 2011, 55(2): 457-469.Vegni A M, Loscrí V. A survey on vehicular social networks. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2397-2419.Eze E C, Zhang S J, Liu E J. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proc. the 20th Int. Conf. Automation and Computing, September 2014, pp.176-181.Qi L. Research on intelligent transportation system technologies and applications. In Proc. Workshop on Power Electronics and Intelligent Transportation System, August 2008, pp.529-531.Gozalvez J. First Google’s Android phone launched [Mobile Radio]. IEEE Vehicular Technology Magazine, 2008, 3(4): 3-69.Haklay M,Weber P. OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 2008, 7(4): 12-18.Hadiwardoyo S A, Patra S, Calafate C T, Cano J C, Manzoni P. An Android ITS driving safety application based on vehicle-to-vehicle (V2V) communications. In Proc. the 26th Int. Conf. Computer Communication and Networks, July 31-August 3, 2017.Eriksson J, Balakrishnan H, Madden S. Cabernet: Vehicular content delivery using WiFi. In Proc. the 14th ACM Int. Conf. Mobile Computing and Networking, September 2008, pp.199-210.Gerla M, Weng J T, Giordano E, Pau G. Vehicular testbeds-validating models and protocols before large scale deployment. In Proc. Int. Conf. Computing Networking and Communications, January 30-February 2, 2012, pp.665-669.Wahlström J, Skog I, Händel P. Smartphone-based vehicle telematics: A ten-year anniversary. IEEE Trans. Intelligent Transportation Systems, 2017, 18(10): 2802-2825.Whipple J, Arensman W, Boler M S. A public safety application of GPS-enabled smartphones and the Android operating system. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2009, pp.2059-2061.Meseguer J E, Calafate C T, Cano J C, Manzoni P. DrivingStyles: A smartphone application to assess driver behavior. In Proc. IEEE Symp. Computers and Communications, July 2013, pp.000535-000540.You C W, Lane N D, Chen F L, Wang R, Chen Z Y, Bao T J, Montes-De-Oca M, Cheng Y T, Lin M, Torresani L, Campbell A T. CarSafe app: Alerting drowsy and distracted drivers using dual cameras on smartphones. In Proc. the 11th Annual Int. Conf. Mobile Systems Applications and Services, June 2013, pp.461-462.Patra S, Arnanz J H, Calafate C T, Cano J C, Manzoni P. EYES: A novel overtaking assistance system for vehicular networks. In Proc. the 14th Int. Conf. Ad-Hoc Networks and Wireless, June 2015, pp.375-389.Togneri M C, Deriaz M. On-board navigation system for smartphones. In Proc. Int. Conf. Indoor Positioning and Indoor Navigation, October 2013.Dancu A, Franjcic Z, Fjeld M. Smart flashlight: Map navigation using a bike-mounted projector. In Proc. the SIGCHI Conf. Human Factors in Computing Systems, April 2014, pp.3627-3630.Yamabe T, Ikegami S, Ishizaki A, Kitagami S, Kiyohara R. Car navigation user interface based on a smartphone. In Proc. the 7th Int. Conf. Mobile Computing and Ubiquitous Networking, January 2014, pp.85-86.Matsuyama S, Yamabe T, Takahashi N, Kiyohara R. Intelligent user interface of smartphones for on-vehicle information devices. Procedia Computer Science, 2014, 35: 1635-1643.Kovacevic B, Kovacevic M, Maruna T, Papp I. A java application programming interface for in-vehicle infotainment devices. IEEE Trans. Consumer Electronics, 2017, 63(1): 68-76.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Themis: A participatory navigation system for balanced traffic routing. In Proc. IEEE Vehicular Networking Conf., December 2014, pp.159-166.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Balanced traffic routing: Design, implementation, and evaluation. Ad Hoc Networks, 2016, 37: 14-28.Vochin M, Zoican S, Borcoci E. Intelligent system for vehicle navigation assistance. In Proc. World Conf. Information Systems and Technologies, April 2017, pp.142-148.Sha W J, Kwak D, Nath B, Iftode L. Social vehicle navigation: Integrating shared driving experience into vehicle navigation. In Proc. the 14th Workshop on Mobile Computing Systems and Applications, February 2013, Article No. 16.Kwak D, Liu R L, Kim D, Nath B, Iftode L. Seeing is believing: Sharing real-time visual traffic information via vehicular clouds. IEEE Access, 2016, 4: 3617-3631.Djajadi A, Putra R J. Inter-cars safety communication system based on Android smartphone. In Proc. IEEE Conf. Open Systems, October 2014, pp.12-17.Dorairaj P, Mohammed A, Grbic N. Location-Aware services using Android mobile operating platform for safety, emergency and health applications. In Mobile Health, Adibi S (ed.), Springer, 2015, pp.283-298.Dorairaj P, Ramamoorthy S, Ramalingam A K. Emergency based remote collateral tracking system using Google’s Android mobile platform. In Advances in Computer Science Engineering & Applications, Wyld D C, Zizka J, Nagamalai D (eds.), Springer, 2012, pp.391-403.Zulkafi A Z, Basri S, Jung L T, Ahmad R. Android based car alert system. In Proc. the 3rd Int. Conf. Computer and Information Sciences, August 2016, pp.501-506.Tornell S M, Calafate C T, Cano J C, Manzoni P, Fogue M, Martinez F J. Evaluating the feasibility of using smartphones for ITS safety applications. In Proc. the 77th IEEE Vehicular Technology Conf., June 2013.Tornell S M, Patra S, Calafate C T, Cano J C, Manzoni P. GRCBox: Extending smartphone connectivity in vehicular networks. International Journal of Distributed Sensor Networks, 2015, 2015: Article No. 5.Mirkovic J, Dietrich S, Dittrich D, Reiher P. Internet Denial of Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and Security). Prentice Hall PTR, 2004.Chen S, Xu J, Sezer E C, Gauriar P, Iyer R K. Non-control-data attacks are realistic threats. In Proc. the 14th Conf. USENIX Security Symp., July 31-August 5, 2005.Fung C K, Lee M C. A denial-of-service resistant public-key authentication and key establishment protocol. In Proc. the 21st IEEE Int. Performance Computing and Communications Conf., April 2002, pp.171-178.Abadi M, Budiu M, Erlingsson Ú, Ligatti J. Control-flow integrity. In Proc. the 12th ACM Conf. Computer and Communications Security, November 2005, pp.340-353

    A bandwidth sharing approach to improve licensed spectrum utilization

    No full text
    Abstract- The spectrum of deployed wireless cellular communication systems is found to be under-utilized, even though licensed spectrum is at a premium. To efficiently utilize the bandwidth left unused in a cellular system, which we denote as the primary system (PRI), we design a system with an ad hoc overlay network, which we denote as the secondary system (SEC). The basic design principle is that the SEC operates in a nonintrusive manner and does not interact with the PRI. We develop the AS-MAC, an Ad hoc SEC Medium Access Control protocol to enable the interoperation of the PRI-SEC system. We address a number of technical challenges pertinent to this networking environment, and evaluate AS-MAC. Our performance evaluation results show that, in a single-hop ASN, the AS-MAC transparently utilizes 75 % of the bandwidth left unused by the PRI, while, in multi-hop ASNs, due to spatial reuse, the AS-MAC can utilize up to 180 % of the idle PRI resources. I
    • …
    corecore