1,896 research outputs found

    Prospects and status of quark mass renormalization in three-flavour QCD

    Full text link
    We present the current status of a revised strategy to compute the running of renormalized quark masses in QCD with three flavours of massless O(a) improved Wilson quarks. The strategy employed uses the standard finite-size scaling method in the Schr\"odinger functional and accommodates for the non-perturbative scheme-switch which becomes necessary at intermediate renormalized couplings as discussed in [arXiv:1411.7648].Comment: 7 pages, 3 figures, 1 table; Proceedings of the 33rd International Symposium on Lattice Field Theory, 14-18 July 2015, Kobe, Japa

    Suitability of soil bioengineering techniques in Central America: a case study in Nicaragua

    Get PDF
    International audienceIn the last few years "D. I. A. F." (Department of Agriculture and Forestry Engineering of Florence University), has been testing the effectiveness of Soil Bio-Engineering techniques in Central America. The focus of the present study was to find out which native plants were most suited for soil bio-engineering purposes, particularly in the realization of riverbank protection. Furthermore, we have also been aiming at economic efficiency. In the context of sustainable watershed management, these techniques seem to be appropriate, especially in underdeveloped countries. Concerning the plants to be used, we considered three native species, Gliricidia Sepium, Cordia dentata and Jatropha curcas, to be appropriate for this type of work. Economically speaking, the low cost of such interventions in underdeveloped countries, has been shown by the construction of riverbank protection using vegetated crib-walls in Nicaragua

    Negative Prognostic Effect of Baseline Antipsychotic Exposure in Clinical High Risk for Psychosis (CHR-P): Is Pre-Test Risk Enrichment the Hidden Culprit?

    Get PDF
    INTRODUCTION: Sample enrichment is a key factor in contemporary early-detection strategies aimed at the identification of help-seekers at increased risk of imminent transition to psychosis. We undertook a meta-analytic investigation to ascertain the role of sample enrichment in the recently highlighted negative prognostic effect of baseline antipsychotic (AP) exposure in clinical high-risk (CHR-P) of psychosis individuals. METHODS: Systematic review and meta-analysis of all published studies on CHR-P were identified according to a validated diagnostic procedure. The outcome was the proportion of transition to psychosis, which was calculated according to the Freeman‐Tukey double arcsine transformation. RESULTS: Thirty-three eligible studies were identified, including 16 samples with details on AP exposure at baseline and 17 samples with baseline AP exposure as exclusion criterion for enrollment. Those with baseline exposure to AP (n = 395) had higher transition rates (29.9%; 95% CI: 25.1%–34.8%) than those without baseline exposure to AP in the same study (n = 1289; 17.2%; 15.1%–19.4%) and those coming from samples that did not include people who were exposed to AP at baseline (n = 2073; 16.2%; 14.6%–17.8%; P < .05 in both the fixed-effects and the random-effects models). Heterogeneity within studies was substantial, with values above 75% in all comparisons. CONCLUSIONS: Sample enrichment is not a plausible explanation for the higher risk of transition to psychosis of CHR-P individuals who were already exposed to AP at the enrollment in specialized early-detection programs. Baseline exposure to AP at CHR-P assessment is a major index of enhanced, imminent risk of psychosis

    Guided Graph Spectral Embedding: Application to the C. elegans Connectome

    Full text link
    Graph spectral analysis can yield meaningful embeddings of graphs by providing insight into distributed features not directly accessible in nodal domain. Recent efforts in graph signal processing have proposed new decompositions-e.g., based on wavelets and Slepians-that can be applied to filter signals defined on the graph. In this work, we take inspiration from these constructions to define a new guided spectral embedding that combines maximizing energy concentration with minimizing modified embedded distance for a given importance weighting of the nodes. We show these optimization goals are intrinsically opposite, leading to a well-defined and stable spectral decomposition. The importance weighting allows to put the focus on particular nodes and tune the trade-off between global and local effects. Following the derivation of our new optimization criterion and its linear approximation, we exemplify the methodology on the C. elegans structural connectome. The results of our analyses confirm known observations on the nematode's neural network in terms of functionality and importance of cells. Compared to Laplacian embedding, the guided approach, focused on a certain class of cells (sensory, inter- and motoneurons), provides more biological insights, such as the distinction between somatic positions of cells, and their involvement in low or high order processing functions.Comment: 43 pages, 7 figures, submitted to Network Neuroscienc
    corecore