137 research outputs found

    Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study

    Get PDF
    The clinical presentation of diabetes sometimes overlaps, contributing to ambiguity in the diagnosis. Thus, circulating pancreatic islet-enriched microRNAs (miRNAs) might be useful biomarkers of β-cell injury/dysfunction that would allow more accurate subtyping of diabetes. We measured plasma levels of selected miRNAs in subjects with prediabetes (n = 12), type 2 diabetes (T2D, n = 31), latent autoimmune diabetes of adults (LADA, n = 6) and type 1 diabetes (T1D, n = 16) and compared them to levels in healthy control subjects (n = 27). The study was conducted at the Translational Research Institute for Metabolism and Diabetes (TRI-MD), Florida Hospital. MiRNAs including miR-375 (linked to β-cell injury), miR-21 (associated with islet inflammation), miR-24.1, miR-30d, miR-34a, miR-126, miR-146, and miR-148a were significantly elevated in subjects with various forms of diabetes compared to healthy controls. Levels of several miRNAs were significantly correlated with glucose responses during oral glucose tolerance testing, HbA[subscript 1c], β-cell function, and insulin resistance in healthy controls, prediabetes, and T2D. These data suggest that miRNAs linked to β-cell injury and islet inflammation might be useful biomarkers to distinguish between subtypes of diabetes. This information could be used to predict progression of the disease, guide selection of optimal therapy and monitor responses to interventions, thus improving outcomes in patients with diabetes.Translational Research Institute for Metabolism and Diabetes (TRI

    Molecular Characterization of the Tumor Suppressor Candidate 5 Gene: Regulation by PPARγ and Identification of TUSC5 Coding Variants in Lean and Obese Humans

    Get PDF
    Tumor suppressor candidate 5 (TUSC5) is a gene expressed abundantly in white adipose tissue (WAT), brown adipose tissue (BAT), and peripheral afferent neurons. Strong adipocyte expression and increased expression following peroxisome proliferator activated receptor γ (PPARγ) agonist treatment of 3T3-L1 adipocytes suggested a role for Tusc5 in fat cell proliferation and/or metabolism. However, the regulation of Tusc5 in WAT and its potential association with obesity phenotypes remain unclear. We tested the hypothesis that the TUSC5 gene is a bona fide PPARγ target and evaluated whether its WAT expression or single-nucleotide polymorphisms (SNPs) in the TUSC5 coding region are associated with human obesity. Induction of Tusc5 mRNA levels in 3T3-L1 adipocytes by troglitazone and GW1929 followed a dose-response consistent with these agents' binding affinities for PPARγ. Chromatin immunoprecipitation (ChIP) experiments confirmed that PPARγ protein binds a ∼ −1.1 kb promotor sequence of murine TUSC5 transiently during 3T3-L1 adipogenesis, concurrent with histone H3 acetylation. No change in Tusc5 mRNA or protein levels was evident in type 2 diabetic patients treated with pioglitazone. Tusc5 expression was not induced appreciably in liver preparations overexpressing PPARs, suggesting that tissue-specific factors regulate PPARγ responsiveness of the TUSC5 gene. Finally, we observed no differences in Tusc5 WAT expression or prevalence of coding region SNPs in lean versus obese human subjects. These studies firmly establish the murine TUSC5 gene locus as a PPARγ target, but the significance of Tusc5 in obesity phenotypes or in the pharmacologic actions of PPARγ agonists in humans remains equivocal

    E4orf1: A Novel Ligand That Improves Glucose Disposal in Cell Culture

    Get PDF
    Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance(IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 ‘requires’ E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as ‘sufficient’ to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras–the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large(Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif(PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs

    The dynamics of human body weight change

    Get PDF
    An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that the long-term dynamics of human weight change can be captured by a mathematical model of the macronutrient flux balances and all previous models are special cases of this model. We show that the generic dynamical behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes and existing data are insufficient to distinguish between these two possibilities. However, this distinction is important for the efficacy of clinical interventions that alter body composition and mass

    TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages

    Get PDF
    International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells

    Endothelial Dysfunction and Specific Inflammation in Obesity Hypoventilation Syndrome

    Get PDF
    BACKGROUND: Obesity hypoventilation syndrome (OHS) is associated with increased cardiovascular morbidity. What moderate chronic hypoventilation adds to obesity on systemic inflammation and endothelial dysfunction remains unknown. QUESTION: To compare inflammatory status and endothelial function in OHS versus eucapnic obese patients. METHODOLOGY: 14 OHS and 39 eucapnic obese patients matched for BMI and age were compared. Diurnal blood gazes, overnight polysomnography and endothelial function, measured by reactive hyperemia peripheral arterial tonometry (RH-PAT), were assessed. Inflammatory (Leptin, RANTES, MCP-1, IL-6, IL-8, TNFalpha, Resistin) and anti-inflammatory (adiponectin, IL-1Ra) cytokines were measured by multiplex beads immunoassays. PRINCIPAL FINDINGS: OHS exhibited a higher PaCO(2), a lower forced vital capacity (FVC) and tended to have a lower PaO(2) than eucapnic obese patients. (HS)-CRP, RANTES levels and glycated haemoglobin (HbA1c) were significantly increased in OHS (respectively 11.1+/-10.9 vs. 5.7+/-5.5 mg x l(-1) for (HS)-CRP, 55.9+/-55.3 vs 23.3+/-15.8 ng/ml for RANTES and 7.3+/-4.3 vs 6.1+/-1.7 for HbA1c). Serum adiponectin was reduced in OHS (7606+/-2977 vs 13,660+/-7854 ng/ml). Endothelial function was significantly more impaired in OHS (RH-PAT index: 0.22+/-0.06 vs 0.51+/-0.11). CONCLUSIONS: Compared to eucapnic obesity, OHS is associated with a specific increase in the pro-atherosclerotic RANTES chemokine, a decrease in the anti-inflammatory adipokine adiponectin and impaired endothelial function. These three conditions are known to be strongly associated with an increased cardiovascular risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT00603096

    Valsartan Improves Adipose Tissue Function in Humans with Impaired Glucose Metabolism: A Randomized Placebo-Controlled Double-Blind Trial

    Get PDF
    <div><h3>Background</h3><p>Blockade of the renin-angiotensin system (RAS) reduces the incidence of type 2 diabetes mellitus. In rodents, it has been demonstrated that RAS blockade improved adipose tissue (AT) function and glucose homeostasis. However, the effects of long-term RAS blockade on AT function have not been investigated in humans. Therefore, we examined whether 26-wks treatment with the angiotensin II type 1 receptor blocker valsartan affects AT function in humans with impaired glucose metabolism (IGM).</p> <h3>Methodology/Principal Findings</h3><p>We performed a randomized, double-blind, placebo-controlled parallel-group study, in which 38 subjects with IGM were treated with valsartan (VAL, 320 mg/d) or placebo (PLB) for 26 weeks. Before and after treatment, an abdominal subcutaneous AT biopsy was collected for measurement of adipocyte size and AT gene/protein expression of angiogenesis/capillarization, adipogenesis, lipolytic and inflammatory cell markers. Furthermore, we evaluated fasting and postprandial AT blood flow (ATBF) (<sup>133</sup>Xe wash-out), systemic inflammation and insulin sensitivity (hyperinsulinemic-euglycemic clamp). VAL treatment markedly reduced adipocyte size (<em>P</em><0.001), with a shift toward a higher proportion of small adipocytes. In addition, fasting (<em>P</em> = 0.043) and postprandial ATBF (<em>P</em> = 0.049) were increased, whereas gene expression of angiogenesis/capillarization, adipogenesis and macrophage infiltration markers in AT was significantly decreased after VAL compared with PLB treatment. Interestingly, the change in adipocyte size was associated with alterations in insulin sensitivity and reduced AT gene expression of macrophage infiltration markers. VAL did not alter plasma monocyte-chemoattractant protein (MCP)-1, TNF-α, adiponectin and leptin concentrations.</p> <h3>Conclusions/Significance</h3><p>26-wks VAL treatment markedly reduced abdominal subcutaneous adipocyte size and AT macrophage infiltration markers, and increased ATBF in IGM subjects. The VAL-induced decrease in adipocyte size was associated with reduced expression of macrophage infiltration markers in AT. Our findings suggest that interventions targeting the RAS may improve AT function, thereby contributing to a reduced risk of developing cardiovascular disease and type 2 diabetes.</p> <h3>Trial Registration</h3><p>Trialregister.nl NTR721 (ISRCTN Registry: ISRCTN<a href="http://www.controlled-trials.com/isrctn/pf/42786336">42786336</a>)</p> </div
    corecore