794 research outputs found

    Quantum energies with worldline numerics

    Full text link
    We present new results for Casimir forces between rigid bodies which impose Dirichlet boundary conditions on a fluctuating scalar field. As a universal computational tool, we employ worldline numerics which builds on a combination of the string-inspired worldline approach with Monte-Carlo techniques. Worldline numerics is not only particularly powerful for inhomogeneous background configurations such as involved Casimir geometries, it also provides for an intuitive picture of quantum-fluctuation-induced phenomena. Results for the Casimir geometries of a sphere above a plate and a new perpendicular-plates configuration are presented.Comment: 8 pages, 2 figures, Submitted to the Proceedings of the Seventh Workshop QFEXT'05 (Barcelona, September 5-9, 2005), Refs updated, version to appear in JPhys

    Casimir interaction between normal or superfluid grains in the Fermi sea

    Get PDF
    We report on a new force that acts on cavities (literally empty regions of space) when they are immersed in a background of non-interacting fermionic matter fields. The interaction follows from the obstructions to the (quantum mechanical) motions of the fermions caused by the presence of bubbles or other (heavy) particles in the Fermi sea, as, for example, nuclei in the neutron sea in the inner crust of a neutron star or superfluid grains in a normal Fermi liquid. The effect resembles the traditional Casimir interaction between metallic mirrors in the vacuum. However, the fluctuating electromagnetic fields are replaced by fermionic matter fields. We show that the fermionic Casimir problem for a system of spherical cavities can be solved exactly, since the calculation can be mapped onto a quantum mechanical billiard problem of a point-particle scattered off a finite number of non-overlapping spheres or disks. Finally we generalize the map method to other Casimir systems, especially to the case of a fluctuating scalar field between two spheres or a sphere and a plate under Dirichlet boundary conditions.Comment: 8 pages, 2 figures, submitted to the Proceedings of QFEXT'05, Barcelona, Sept. 5-9, 200

    Flow Equations for the BCS-BEC Crossover

    Full text link
    The functional renormalisation group is used for the BCS-BEC crossover in gases of ultracold fermionic atoms. In a simple truncation, we see how universality and an effective theory with composite bosonic di-atom states emerge. We obtain a unified picture of the whole phase diagram. The flow reflects different effective physics at different scales. In the BEC limit as well as near the critical temperature, it describes an interacting bosonic theory.Comment: 4 pages, 4 figure

    Ice Age Epochs and the Sun's Path Through the Galaxy

    Full text link
    We present a calculation of the Sun's motion through the Milky Way Galaxy over the last 500 million years. The integration is based upon estimates of the Sun's current position and speed from measurements with Hipparcos and upon a realistic model for the Galactic gravitational potential. We estimate the times of the Sun's past spiral arm crossings for a range in assumed values of the spiral pattern angular speed. We find that for a difference between the mean solar and pattern speed of Omega_Sun - Omega_p = 11.9 +/- 0.7 km/s/kpc the Sun has traversed four spiral arms at times that appear to correspond well with long duration cold periods on Earth. This supports the idea that extended exposure to the higher cosmic ray flux associated with spiral arms can lead to increased cloud cover and long ice age epochs on Earth.Comment: 14 pages, 3 figures, accepted for publication in Ap

    Strong laser fields as a probe for fundamental physics

    Full text link
    Upcoming high-intensity laser systems will be able to probe the quantum-induced nonlinear regime of electrodynamics. So far unobserved QED phenomena such as the discovery of a nonlinear response of the quantum vacuum to macroscopic electromagnetic fields can become accessible. In addition, such laser systems provide for a flexible tool for investigating fundamental physics. Primary goals consist in verifying so far unobserved QED phenomena. Moreover, strong-field experiments can search for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on photon experiments in strong electromagnetic fields. The interaction of particle-physics candidates with photons and external fields can be parameterized by low-energy effective actions and typically predict characteristic optical signatures. I perform first estimates of the accessible new-physics parameter space of high-intensity laser facilities such as POLARIS and ELI.Comment: 7 pages, Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 9 September - 2 October 2008 at Frauenworth Monastery, German

    The Ultraviolet Spectrum and Physical Properties of the Mass Donor Star in HD 226868 = Cygnus X-1

    Full text link
    We present an examination of high resolution, ultraviolet spectroscopy from Hubble Space Telescope of the photospheric spectrum of the O-supergiant in the massive X-ray binary HD 226868 = Cyg X-1. We analyzed this and ground-based optical spectra to determine the effective temperature and gravity of the O9.7 Iab supergiant. Using non-local thermodynamic equilibrium (non-LTE), line blanketed, plane parallel models from the TLUSTY grid, we obtain T_eff = 28.0 +/- 2.5kK and log g > 3.00 +/- 0.25, both lower than in previous studies. The optical spectrum is best fit with models that have enriched He and N abundances. We fit the model spectral energy distribution for this temperature and gravity to the UV, optical, and IR fluxes to determine the angular size of and extinction towards the binary. The angular size then yields relations for the stellar radius and luminosity as a function of distance. By assuming that the supergiant rotates synchronously with the orbit, we can use the radius - distance relation to find mass estimates for both the supergiant and black hole as a function of the distance and the ratio of stellar to Roche radius. Fits of the orbital light curve yield an additional constraint that limits the solutions in the mass plane. Our results indicate masses of 23^{+8}_{-6} M_sun for the supergiant and 11^{+5}_{-3} M_sun for the black hole.Comment: ApJ in pres

    Towards an Asymptotic-Safety Scenario for Chiral Yukawa Systems

    Full text link
    We search for asymptotic safety in a Yukawa system with a chiral U(NL)L⊗U(1)RU(N_L)_L\otimes U(1)_R symmetry, serving as a toy model for the standard-model Higgs sector. Using the functional RG as a nonperturbative tool, the leading-order derivative expansion exhibits admissible non-Ga\ssian fixed-points for 1≤NL≤571 \leq N_L \leq 57 which arise from a conformal threshold behavior induced by self-balanced boson-fermion fluctuations. If present in the full theory, the fixed-point would solve the triviality problem. Moreover, as one fixed point has only one relevant direction even with a reduced hierarchy problem, the Higgs mass as well as the top mass are a prediction of the theory in terms of the Higgs vacuum expectation value. In our toy model, the fixed point is destabilized at higher order due to massless Goldstone and fermion fluctuations, which are particular to our model and have no analogue in the standard model.Comment: 16 pages, 8 figure

    A transient relativistic radio jet from Cygnus X-1

    Full text link
    We report the first observation of a transient relativistic jet from the canonical black hole candidate, Cygnus X-1, obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN). The jet was observed in only one of six epochs of MERLIN imaging of the source during a phase of repeated X-ray spectral transitions in 2004 Jan--Feb, and this epoch corresponded to the softest 1.5-12 keV X-ray spectrum. With only a single epoch revealing the jet, we cannot formally constrain its velocity. Nevertheless, several lines of reasoning suggest that the jet was probably launched 0.5-4.0 days before this brightening, corresponding to projected velocities of 0.2c < v_app < 1.6c, and an intrinsic velocity of > 0.3c. We also report the occurrence of a major radio flare from Cyg X-1, reaching a flux density of ~120 mJy at 15 GHz, and yet not associated with any resolvable radio emission, despite a concerted effort with MERLIN. We discuss the resolved jet in terms of the recently proposed 'unified model' for the disc-jet coupling in black hole X-ray binaries, and tentatively identify the 'jet line' for Cyg X-1. The source is consistent with the model in the sense that a steady jet appears to persist initially when the X-ray spectrum starts softening, and that once the spectral softening is complete the core radio emission is suppressed and transient ejecta / shock observed. However, there are some anomalies, and Cyg X-1 clearly does not behave like a normal black hole transient in progressing to the canonical soft / thermal state once the ejection event has happened.Comment: Accepted for publication in MNRA
    • …
    corecore