84 research outputs found

    Structure determination of Split-soret Cytochrome from a Desulfovibrio species isolated from a human abdominal abcess

    Get PDF
    The determined structure of the split-soret cytochrome (SSC) isolated from Desulfovibrio desulfuricans ATCC 27774 (D.d.) revealed a new Heme arrangement, which suggests that this protein constitutes a new cytochrome class.. SSC is a 52.6kDa homodimer containing four hemes at one end of the molecule. In each monomer the two hemes have their edges overlapped within van der Waals contacts. The polypeptide chain of each monomer supplies the sixth ligand to the heme-iron of the other monomer. A similar protein was recently purified from a homologous Desulfovibrio clinical strain isolated from an abdominal wall abscess in human patient2. Crystals of this SSC were grown using vapour diffusion method in the presence of agarose gel. Diffraction data were collected using X-ray synchrotron radiation at the ESRF, beamline, ID 14-1. The structure will be solved by molecular replacement using the structure of the D.d. as a starting model

    Novel downstream process and analytical tools developed for Influenza VLP vaccine

    Get PDF
    Vaccination remains the most effective way to prevent the infection with Influenza viruses. However, their constant antigenic drift implies that current human Influenza vaccines need to be annually updated with high inherent costs. Virus-like particles (VLPs) have become widely used as vaccine candidates because of their versatility, immunogenicity, and safety profile. In this iBET project we are attempting to produce a candidate for a universal vaccine for which 35 different VLPs (mono, trivalent and pentavalent) were purified. Here we describe three recent advances on Influenza VLPs bioprocessing: two new analytical tools and the development of an integrated all filtration purification process, inserted in the “anything but chromatography” concept. The first method is a label-free tool that uses Biolayer interferometry technology applied on an Octet platform to quantify Influenza VLPs at all stages of DSP. Human and avian sialic acid receptors were used, in order to quantify hemagglutinin (HA) content in several mono- and multivalent Influenza VLP strains. The applied method was able to detect and quantify HA from crude sample up to final VLP product with high throughput, real-time results and improved detection limits, when compared to traditional approaches, crucial for in-line monitoring of DSP. Using a click-chemistry approach that involves Azidohomoalanine incorporation and functionalization, Influenza VLPs were selectively and fluorescently tagged. Taking into account that this chemical tag does not affect particle size, charge and biological activity we report here a valuable tool to online/at-line product monitoring during DSP optimization of virus related biopharmaceuticals. Moreover, using this tool coupled with FACS we were able to discriminate between VLPs and baculovirus, the major impurity of the system. The proposed all-filtration process will be described, with special focus on the clarification stage, followed by multiple ultrafiltration and diafiltration steps to achieve the needed concentration and purity specifications. Using this all-filtration platform, we are able to speed up the time process, to improve the scale-up and to reduce costs due to the removal of chromatographic steps

    Quorum Sensing Primes the Oxidative Stress Response in the Insect Endosymbiont, Sodalis glossinidius

    Get PDF
    quorum sensing system relies on the function of two regulatory proteins; SogI (a LuxI homolog) synthesizes a signaling molecule, characterized as N-(3-oxohexanoyl) homoserine lactone (OHHL), and SogR1 (a LuxR homolog) interacts with OHHL to modulate transcription of specific target genes. and SOPE. and SOPE indicates the potential for neofunctionalization to occur during the process of genome degeneration

    The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease

    Get PDF
    Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with ‘Candidatus Liberibacter solanacearum’, a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for ‘Ca. L. solanacearum’. Here we present the sequence of the 1.26 Mbp metagenome of ‘Ca. L. solanacearum’, based on DNA isolated from potato psyllids. The coding inventory of the ‘Ca. L. solanacearum’ genome was analyzed and compared to related Rhizobiaceae to better understand ‘Ca. L. solanacearum’ physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, ‘Ca. L. solanacearum’ is related to ‘Ca. L. asiaticus’, a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to ‘Ca. L. asiaticus’, ‘Ca. L. solanacearum’ probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes

    Quaternary structure of flavorubredoxin as revealed by synchrotron radiation small-angle X-ray scattering

    Get PDF
    Flavodiiron proteins (FDP) are modular enzymes which function as NO and/or O(2) reductases. Although the majority is composed of two structural domains, the homolog found in Escherichia coli, flavorubredoxin, possesses an extra C-terminal module consisting of a linker and a rubredoxin (Rd) domain necessary for interprotein redox processes. In order to investigate the location of the Rd domain with respect to the flavodiiron structural core, small-angle X-ray scattering was used to construct low-resolution structural models of flavorubredoxin. Scattering patterns from the Rd domain, the FDP core, and full-length flavorubredoxin were collected. The latter two species were found to be tetrameric in solution. Ab initio shape reconstruction and rigid-body modeling indicate a peripheral location for the Rd domains, which appear to have weak contacts with the FDP core. This finding suggests that Rd behaves as an independent domain and is freely available to participate in redox reactions with protein partners
    • …
    corecore