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SUMMARY

Flavodiiron proteins (FDP) are modular enzymes
which function as NO and/or O2 reductases. Although
the majority is composed of two structural domains,
the homolog found in Escherichia coli, flavorubre-
doxin, possesses an extra C-terminal module con-
sisting of a linker and a rubredoxin (Rd) domain nec-
essary for interprotein redox processes. In order to
investigate the location of the Rd domain with respect
to the flavodiiron structural core, small-angle X-ray
scattering was used to construct low-resolution
structural models of flavorubredoxin. Scattering pat-
terns from the Rd domain, the FDP core, and full-
length flavorubredoxin were collected. The latter
two species were found to be tetrameric in solution.
Ab initio shape reconstruction and rigid-body model-
ing indicate a peripheral location for the Rd domains,
which appear to have weak contacts with the FDP
core. This finding suggests that Rd behaves as an in-
dependent domain and is freely available to partici-
pate in redox reactions with protein partners.

INTRODUCTION

Flavodiiron proteins (FDP; formerly named A-type flavoproteins;

Wasserfallen et al., 1998) constitute a widespread family of nitric

oxide and/or oxygen reductases (Vicente et al., 2008) encoded in

the genomes of mainly anaerobic bacteria, archaea, and a few

protozoan pathogens (Andersson et al., 2006; Saraiva et al.,

2004; Sarti et al., 2004). Members of this protein family have

been assigned either complementary or alternative NO and O2

reductase activities, and play important roles in pathogen sur-

vival. The family is defined by a common polypeptide sequence

of about 400 amino acids that constitute the structural core of

these proteins. Crystal structures have been determined for

several FDPs (Frazao et al., 2000; Seedorf et al., 2007; Silaghi-

Dumitrescu et al., 2005a) (Di Matteo et al., 2008). The first crys-

tallographic structure solved—that of Desulfovibrio gigas rubre-
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doxin:oxygen oxidoreductase (Dg_ROO) (Frazao et al., 2000)—

revealed that FDP is a fusion of two distinct structural domains,

a metallo-b-lactamase domain harboring a diiron site and a flavo-

doxin domain binding one flavin mononucleotide (FMN) with an

�25 Å separation between the two redox centers. However,

Dg_ROO (and so far all FDPs crystallized) was shown to have

a head-to-tail homodimeric arrangement in which the diiron cen-

ter from one monomer is juxtaposed with the FMN of the second

monomer (Figure 1B). This quaternary arrangement appears to

be essential for a functional FDP, because it allows efficient elec-

tron transfer from the electron-accepting FMN group to the

diiron active site where reduction of NO or O2 takes place (Vice-

nte et al., 2008). In all of the known structures, FDP is dimeric

and, with the exception of Thermotoga maritima (Protein Data

Bank [PDB] ID code 1VME), the crystal packing interfaces sug-

gest the formation of higher-order oligomers such as tetramers

(Figure 1B).

Whereas the vast majority of FDPs consist of the two-domain

architecture, some members of the family bear extra C-terminal

domains with redox-active centers (Figure 1A). Such is the case

of Escherichia coli flavorubredoxin (FlRd), which has a C-termi-

nal rubredoxin (Rd) module harboring an iron center coordinated

by the sulfur atoms of four cysteine residues (Fe-Cys4). The Rd

module is connected to the flavodoxin domain in FlRd by a linker

of approximately 20 amino acids. Taking into account that rubre-

doxin is the redox partner of Dg_ROO (and likely of other FDPs)

(Chen et al., 1993; Gomes et al., 1997; Rodrigues et al., 2006;

Silaghi-Dumitrescu et al., 2005b; Victor et al., 2003), the fused Rd

module in FlRd simplifies the overall electron transfer chain that

couples NADH oxidation to NO and/or oxygen reduction (Fig-

ure 1) (Gomes et al., 2000, 2002). A combination of redox and ki-

netics studies has established the Rd domain as the electron-ac-

cepting site of FlRd upon interaction with its NADH oxidizing

redox partner (Figure 1A) (Vicente et al., 2007; Vicente and Teix-

eira, 2005). Moreover, these studies demonstrated a modulation

of the reduction potentials of FlRd upon formation of an electron

transfer complex with its reductase. Thus, to establish the intra-

molecular electron flow mechanism from the Rd domain to the

FMN and diiron cofactors, it remains essential to understand

the relative position of the Rd domain with respect to the FDP

core of FlRd. Attempts to model FlRd using the known FDP
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and Rd structures have been elusive, as it is difficult to predict

how the linker might pack against the FDP core.

The quaternary structure of FlRd, in particular the location of

the Rd module, was investigated by synchrotron small-angle

X-ray scattering (SAXS). When measuring SAXS from dilute

monodisperse macromolecular solutions, the angular depen-

dence of the X-ray scattering intensity is proportional to the scat-

tering from a single particle averaged over all orientations (Feigin

and Svergun, 1987). Analysis of the SAXS patterns, using ab

initio shape reconstruction or rigid-body modeling, provides in-

formation on low-resolution solution structures (Petoukhov and

Svergun, 2005). Both full-length FlRd and its truncated con-

structs (the FDP core lacking the Rd module and the Rd module

alone; Table 1) were studied and a structural model of FlRd was

constructed providing insight into the quaternary structure of this

modular NO reductase.

RESULTS

Overall Parameters
The experimental scattering patterns from the measured con-

structs are presented in Figure 2A, and the overall structural pa-

rameters computed from the SAXS data are given in Table 2. The

scattering curve from the homology model of the Rd domain

computed by the program CRYSOL (Svergun et al., 1995) agrees

well with the experimental data showing only minor deviations

(Figure 2A; Table 2), which may be attributed to the fact that

the Rd construct contains the linker region (Table 1). Using the

forward scattering I0 of the Rd domain as a reference, the molec-

ular masses (MM) of the FDP core and the full-length FlRd were

estimated as 200 and 227 kDa, respectively, pointing to a tetra-

meric assembly in both cases. This conclusion is further corrob-

orated by the excluded volume Vp. Indeed, the increase in the Vp

and I0 values of FlRd (Table 2) is compatible, within error, with the

addition of four copies of the Rd domain with the linker to the

FDP core. The much larger maximum size (Dmax) and radius of

gyration (Rg) values of FlRd compared to FDP (Table 2) indicate

a peripheral location for the Rd domain in FlRd. The distance dis-

tribution functions p(r) of the two constructs (Figure 2B), com-

puted from the experimental data using the indirect Fourier

transform program GNOM (Svergun, 1992), further support this

finding. The p(r) functions are similar up to intraparticle distances

of 4.2 nm but display different profiles at larger distances. The

full-length FlRd has a larger maximum size, and its p(r) goes sys-

tematically above that of the FDP for distances > 5 nm. Given

that each monomer of FlRd contains an FDP flanked by an Rd

module, this observation suggests that the arrangement of the

monomers in the tetrameric FDP is preserved in full-length

FlRd, whereas the Rd domains are located on the periphery.

Shape Determination
Low-resolution ab initio models of FDP and FlRd were con-

structed in the bead modeling program DAMMIN (Svergun,

1999). The assumption of P1, P2, and P222 symmetries yielded

neat fits to the experimental data (Figure 2A; the discrepancy

values cs are given in Table 2), and the volumes of the models

corresponded to those of tetrameric assemblies. The symmetry

conditions do not worsen the quality of the fit, indicating that

both constructs can possess P222 symmetry (expected for tet-

ramers). Superposition of the FlRd and FDP shapes obtained

in P222 (Figure 3) indicates that the two proteins have a similar

overall structure. However, there is an extra volume on the pe-

riphery of FlRd, which can accommodate the Rd domains and

linkers. This result is in agreement with the above analysis of

the overall parameters and p(r) functions. The shape reconstruc-

tions without symmetry restrictions yielded models similar to

those in Figure 3. The similarity was confirmed using the auto-

mated matching program SUPCOMB (Kozin and Svergun,

2001), as the normalized spatial discrepancy (NSD) values be-

tween the models were below 0.8 (see Experimental Procedures

for more details).

Rigid-Body Modeling
The ab initio shape of the tetrameric FDP core (Figure 3) resem-

bles the crystallographic tetramer of Moorella thermoacetica

Figure 1. FDP Organization and Electron

Transfer

(A) Scheme depicting the electron transfer chains

in E. coli and D. gigas involving FDPs as nitric

oxide and/or oxygen reductases. Fe-Fe box, met-

allo-b-lactamase domain of FDP; FMN box, flavo-

doxin domain of FDP; Rd box, rubredoxin, an

additional module of E. coli FDP (flavorubredoxin,

FlRd), or a redox partner of D. gigas FDP; FAD box,

NADH:(flavo)rubredoxin oxidoreductase.

(B) The tetrameric assembly of FDPs as revealed

by X-ray crystallography. Note the dimer of dimers

arrangement. The chains from one of the dimers

are highlighted in dark and light blue with the diiron

and FMN groups shown as spheres. The other di-

mer is colored orange and yellow. The coordinates

of M. thermoacetica FDP (PDB ID code 1YCH;

Silaghi-Dumitrescu et al., 2003) were used to

prepare the figure in PyMOL (DeLano, 2002).

Table 1. Size of Protein Constructs Investigated by SAXS

Name Length MM Monomer (kDa)

FlRd 1–479 �55

FDP 1–412 �47

Rd 401–479 �8.6
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FDP (Figure 1B) (which shares 41% sequence identity with FlRd).

However, the scattering curve computed in CRYSOL (Svergun

et al., 1995) from the atomic coordinates of the latter does not

fit the experimental data (c = 6.6; Figure 2A). This suggests

that the tetrameric assembly is different in solution compared

to that in the crystal. Given that the FDP dimer interface is nec-

essary to maintain contacts between the diiron and FMN cofac-

tors, the dimer interface was maintained intact when performing

rigid-body modeling of FlRd. The positions of the dimers were re-

fined assuming that they are identical in the FDP and FlRd tetra-

mers. Rigid-body modeling was performed using the program

SASREF (Petoukhov and Svergun, 2005) to build a model of

the full-length FlRd tetramer by simultaneous fitting of the scat-

tering curves from FDP and FlRd. Given that the homology model

of the Rd domain is compatible with the experimental SAXS

data, it was used for molecular modeling together with the crys-

tallographic FDP dimer. First, the modeling was performed using

P222 symmetry restrictions on the entire FlRd. In P222, the sym-

metrically independent entity is the FDP monomer and therefore

distance restraints were imposed to maintain the dimer interface

(see Experimental Procedures). Additional distance restraints

were used to attach the linker and Rd domain to the C termini

of the FDP monomers. Rigid-body modeling led to a significantly

improved fit between the computed curves and the experimental

data for FDP (c = 2.0; Figure 2A). Interestingly, the resulting

model had an almost parallel arrangement of the dimers (Fig-

ure 4A) in contrast to their tilted configuration in the crystallo-

Figure 2. Scattering Patterns and Distribu-

tion Functions

(A) SAXS data of FlRd constructs. (1) Rd module,

(2) FDP core, and (3) full-length FlRd. Experimental

data are denoted by dots, and fits from ab initio

and rigid-body models (homology model for Rd

domain) are shown as blue solid and red dashed

lines, respectively. The fit from the crystallo-

graphic tetramer (Figure 1B) of M. thermoacetica

FDP is given as a green dashed line.

(B) Distance distribution functions of the FDP core

(red) and full-length FlRd (blue).

Table 2. Parameters Obtained by SAXS

Sample I0 Rg (nm) Vp (nm3) Dmax (nm) cs corig crb

FlRd 387 4.5 375 15 1.36 - 1.0

FDP 342 3.4 330 10.5 1.58 6.6 2.0

Rd 14.6 1.2 10.2 3.5 - 1.4 -

I0, Rg, Vp, and Dmax are forward scattering, radius of gyration, excluded

volume, and maximum size, respectively. cs and corig are the discrep-

ancies from the ab initio and atomic models (crystal structure for FDP

and a homology model for Rd). crb are the values from the typical rigid-

body model reconstructed with no symmetry restrictions for the linker

and Rd domain while keeping P222 for the FDP dimer.

graphic tetramer (Figure 1B). Such rear-

rangement corresponds to a screw

movement, with 25� rotation and 0.25 nm

outward shift of each dimer along the axis

connecting the centers of the dimers

yielding a root-mean-square deviation (rmsd) of 1.3 nm between

the atoms of the original and the refined models. As expected,

the Rd modules were located on the periphery of FlRd and

showed loose interactions with the FDP core.

The fact that the Rd modules were positioned far from the FDP

core suggests high mobility and possible asymmetry in the linker

and Rd portions. Further refinement with symmetry restrictions

applied only to the FDP core and not to the four copies of the

linker, and the Rd domain yielded a minor improvement in the

fit to the experimental data for FlRd (Figure 2A). A typical asym-

metric model is presented in Figure 4B and the corresponding c

values are given in Table 2. Other modeling attempts, without

any symmetry restraints or assuming a single two-fold axis, pro-

duced models with similar overall shapes with the FDP core sur-

rounded by distant Rd domains. However, compared to the

symmetry-restrained calculations, these models did not improve

the fits to the experimental SAXS data.

The ab initio model of FlRd in Figure 3 displays two (not four)

extra bulges emerging from the FDP core, hinting at a possible

interaction between pairs of Rd domains. This possibility was

tested by rigid-body modeling (SASREF) in P222 with additional

distance restraints to impose pairwise proximity of the Rd do-

mains. A typical result from this modeling (Figure 4C) displays

Rd-Rd contacts, but compared to the other two models in Fig-

ure 4 gives a worse fit to the experimental data. Thus, it can be

concluded that the interaction of pairs of Rd domains is unlikely.

The smaller bulges in the ab initio model result from its low

resolution and the requirement of compactness. The highly ex-

tended linkers between the FDP and Rd domains in full-length

FlRd are likely to be flexible, and therefore the models in Figure 4

are snapshots of the possible configurations of the Rd domains.

Importantly, however, these extended configurations were

reproducibly obtained in multiple reconstructions and they rule

out tight contacts between the Rd domains and the FDP core.

Accessing Conformational Variability
In the above approaches, we tried to generate structural models

fitting experimental scattering data on a ‘‘one-to-one’’ basis, that

is, to find a single model which fits the experimental pattern. The

results obtained demonstrate virtually no contacts between the
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Rd domains and the FDP core (Figure 4). It is logical to expect

high flexibility of the linkers and therefore of the positions of

the Rd domains. To address this potential flexibility and to quan-

titatively describe the preferential positions of the C-terminal part

of FlRd, a recently developed alternative modeling approach

was used allowing for the coexistence of multiple conformations

in solution. This approach, called the ensemble optimization

method (EOM; Bernado et al., 2007), generates representative

sets of randomized models and employs a genetic algorithm to

select subsets of these models such that their averaged scatter-

ing fits the experimental data.

For EOM, the tetrameric FDP core was fixed in the arrange-

ment taken from the best rigid-body model and the Rd domains

in random orientations were attached to the core by random

linkers. First, the pool was filled with 10,000 asymmetric models

whereby the conformations and orientations of the four linkers in

the tetramer were independent of one another. The Rg distribu-

tion of the models in this pool is displayed in Figure 5 (curve 1).

Figure 3. Ab Initio Modeling of FlRd

Constructs

(A) Ab initio models of FlRd (gray beads) and the

FDP core (blue beads) reconstructed in P222.

(B) Comparison of the ab initio shape of FDP with

the crystallographic tetramer of of M. thermoace-

tica FDP (shown as a red backbone trace).

Figure 4. Rigid-Body Models of FlRd

(A) Reconstruction in P222.

(B) No symmetry restraints for the Rd domain and

linkers.

(C) P222 modeling with the requirement of

contacts between Rd domains.

These are displayed in space-filled mode with the

same color scheme for the FDP tetramer as in

Figure 1B. The linkers and Rd domain are colored

green and magenta, respectively. The middle and

bottom views are rotated by 90� about the hori-

zontal and vertical axes, respectively.

Surprisingly, the optimization of this

pool did not allow fitting of the experi-

mental data, and even the best suben-

sembles yielded c worse than 4.0. Analy-

sis of the Rg distribution in the selected

ensembles indicated that EOM was trying

to select models with Rg exceeding 4.2 nm, which were nearly

absent in the asymmetrically generated pool. This indicated

that the extent of the 10,000 random asymmetric models was

insufficient to adequately sample the conformational space of

FlRd. The use of P222 symmetry for the generation of the random

pool of only 1,000 structures widened significantly the Rg distri-

bution compared to the asymmetric case (Figure 5, curve 2) and

EOM yielded better fits to the data with c = 1.5. The widening of

the distribution in the symmetric case is explained by the cumu-

lative effect of the linker conformations in each monomer (e.g., all

linkers are either compacted or extended).

To further explore the possible asymmetry of FlRd, yet another

1,000 structures were generated without symmetry constraints

but with the requirement of the extended conformation of the

linkers (a minimum of 5.0 nm end-to-end distance). Note that

this method of generation (with the Rg distribution in Figure 5,

curve 3) still did not exclude the possibility of contacts between

the Rd and FDP domains. The use of the entire pool of 12,000

Structure 16, 1428–1436, September 10, 2008 ª2008 Elsevier Ltd All rights reserved 1431
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random and deliberately extended models (both symmetric and

asymmetric) yielded marginal improvement in the fit (c = 1.3)

compared to the purely symmetric case. Also, the fits obtained

in multiple EOM runs were approximately of the same quality

as that of the rigid-body model. However, the EOM provides

the important result that in all selected models, all the linkers

were significantly extended and the Rd domains were located

far from the core and, moreover, not a single model showed con-

tacts between any of the Rd domains and the core. The Rg dis-

tribution of the selected models is shifted significantly to the

larger values compared to that of the pool (see Figure 5, curve 4).

This finding suggests that the extended conformation of the

linkers with no interactions between the Rd domains and the

core is predominant in solution. A typical subset of selected

structures giving the idea of structural diversity of FlRd is dis-

played in Figure 6. The average length of the linker between the

FDP and Rd domains in the selected models was 4.3 ± 0.8 nm,

close to the expected distance between the N and C termini of

a 24 amino acid long random peptide (Fitzkee and Rose,

2004). The average rmsd between the atomic coordinates of

the Rd domain in distinct models was 3.9 ± 1.6 nm, somewhat

exceeding the diameter of the Rd molecule (about 3 nm). These

average parameters further confirm that the Rd portions, al-

though protruding far to the periphery of FlRd, occupy rather

well defined sectors relative to the FDP core.

DISCUSSION

Protein-protein interactions are integral to protein function, as

quaternary structure provides a framework for the juxtaposition

of active sites. The analyses of protein crystal structures, and

packing interfaces in particular, have yielded important insights

into the determinants of oligomerization (Bahadur et al., 2004;

Ponstingl et al., 2005). In the present paper, SAXS was employed

to elucidate the structure of FlRd and to establish the relative po-

sition of the Rd module with respect to the FDP core. Both the

FDP core and full-length FlRd were found to be tetrameric in

solution, and removal of the Rd domain had little impact on

this tetrameric assembly. Surprisingly, although the ab initio

shape reconstruction of FDP appeared similar to the crystallo-

graphic tetramer of the homologous M. thermoacetica protein,

the scattering pattern computed from this tetramer failed to fit

the experimental SAXS data. For comparison, SAXS data were

also obtained on Dg_ROO. This construct displayed some

aggregation, which was reflected by an intensity upturn at very

small angles (Figure 7), but starting from about s = 0.3 nm�1

(i.e., resolution about 20 nm) the experimental scattering from

Dg_ROO neatly coincided with that from the FDP construct of

FlRd. One can conclude that the tetrameric assembly of the

FDPs is different in solution compared to that in the crystal.

Whereas the ‘‘head-to-tail’’ dimer interface (which mediates

close contacts between the diiron and FMN sites; Figure 1B) is

likely to be maintained in solution, the dimer-dimer packing

within the tetramer is altered (0.25 nm shift and 25� rotation of

each dimer, as mentioned above). This difference is not

Figure 5. The Distributions of the Radii of Gyration in the Ensembles

of FlRd

Pools containing the FDP core with four Rd domains attached by random

linkers and consisting of 10,000 asymmetric structures (1), 1,000 symmetric

structures (2), and 1,000 asymmetric models with extended linkers (3). Distri-

bution (4) corresponds to the average over 150 ensembles selected by EOM.

Figure 6. EOM Representative Models

A typical ensemble selected by EOM from a pool of randomized structures.

The bottom view is rotated by 90� about horizontal axis.
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surprising, as crystal packing forces can alter the quaternary

structure of multisubunit proteins, which is reported in numerous

publications (e.g., Andersen et al., 2006; Svergun et al., 2000).

To further understand the oligomeric organization of FDP, it

should be recalled that four of its five crystal structures demon-

strated the tetrameric assembly illustrated in Figure 1B. How-

ever, the structure of the homolog from T. maritima (PDB ID

code 1VME) does not involve any large dimer-dimer interface,

on account of an N-terminal His tag, which is sufficient to steri-

cally hinder oligomerization. In addition to highlighting differ-

ences between the crystal and solution structure of FDPs, anal-

ysis of the SAXS data also reveals interesting information on the

location and behavior of the Rd module. Deletion of the C-termi-

nal Rd domain did not lead to any significant rearrangement of

the FDP core. Both the ab initio and the rigid-body modeling in-

dicate that the Rd domain is remotely positioned with respect to

the core. Despite some ambiguities in the rigid-body analysis

(which may partly be attributed to flexibility in the tetrameric as-

sembly of FlRd), the Rd domains were consistently positioned on

the periphery of FlRd and displayed weak contacts with the FDP

core (Figures 4 and 6). It appears therefore that the Rd domain of

FlRd is tethered by a flexible linker and exhibits considerable

configurational freedom. Extensive domain motions are known

to be important in a number of redox systems. For example, in

the cytochrome bc1 complex, the Rieske protein has a flexible

tether and moves through a distance of �15 Å to transfer elec-

trons from cytochrome b to cytochrome c1 (Zhang et al., 1998).

The FAD domain of the modular electron-transferring flavopro-

tein is also known to explore different conformations to facilitate

electron transfer to redox partners (Leys et al., 2003). Moreover,

NMR studies have revealed examples of transient redox com-

plexes in which the proteins form a dynamic ensemble of ener-

getically similar configurations (Volkov et al., 2005; Worrall

et al., 2002, 2003).

Figure 7. Comparison of the Experimental Scattering Profiles of

Dg_ROO and FlRd

The scattering curve computed from the crystallographic Dg_ROO tetramer

(PDB ID code 1YCH) is presented as a green solid line. Dg_ROO, red circles;

FlRd, blue triangles.
Structure 16, 1428–14
In the rigid-body modeling of the FlRd structures, we em-

ployed the atomic structure of M. thermoacetica FDP (PDB ID

code 1YCH) yielding the best sequence homology to FlRd

among the models available from the Protein Data Bank. To ver-

ify whether minor changes in the atomic structure of the template

would have an impact on the results, we screened five mono-

meric structures of FDP from the PDB. As the sequence homol-

ogy may not necessarily correlate with the structural homology,

we first compared the scattering patterns computed from the

five monomers (see Figure S1 available online). The monomers

gave very similar scattering in the range of scattering angles re-

sponsible for the quaternary structure of FlRd (up to s = 2 nm�1).

Then we took the monomer of F420H2 oxidase (PDB ID code

2OHH) yielding the largest discrepancy to the scattering com-

puted from PDB ID code 1YCH and performed rigid-body mod-

eling using the monomeric PDB ID code 2OHH structure. The

generated model of the FlRd core based on the PDB ID code

2OHH monomer yields a somewhat worse fit to the experimental

SAXS data (Figure S2) but shows virtually the same arrangement

of dimers in the FlRd core tetramer as the model reported in the

paper (Figure S3). This indicates that minor variations in the

tertiary structure of the monomeric template have little impact

on the overall model of the FlRd core.

The analysis of crystallographic and NMR spectroscopic data

indicates that redox proteins form transient complexes via small

flat binding sites (�500 Å2 buried surface per protein), the core of

which is hydrophobic and encompasses the redox cofactor or

a surface-exposed ligand of the active site (Crowley and Car-

rondo, 2004; Crowley and Ubbink, 2003). Polar and charged

side chains line the periphery of the binding site and frequently

there is a juxtaposition of complementary charged groups

across the interface. This type of binding site architecture was

found recently in the crystal structure of a rubredoxin bound to

its reductase (Hagelueken et al., 2007). Acidic patches flanking

the Fe-Cys4 site of Rd are complemented by clusters of basic

side chains that surround the exposed edge of the FAD isoallox-

azine ring in rubredoxin reductase. Interestingly, a similar portion

of the FMN group (atom N3 of the isoalloxazine ring) protrudes

through the ‘‘back’’ of FlRd, and the surrounding surface is pos-

itively charged (Figure 8A). Previous protein-docking simulations

of the interaction between rubredoxin and Dg_ROO identified

this region of the protein surface as the putative Rd binding

site (Victor et al., 2003). It can be envisaged that coulombic at-

tractions between this positive patch and the negatively charged

Rd (as putatively illustrated in Figure 8) steer the mobile Rd

domain toward redox active interactions with the FMN site of

FDP. Moreover, the linker is sufficiently long as to permit Rd

access to this region of the FDP core (Victor et al., 2003).

The SAXS data herein reportedcomplementprevious biochem-

ical studies on the electron transfer reaction between FlRd and

FlRd reductase. Electron transfer from FlRd reductase involves

the Rd domain as the electron entry point of FlRd. Subsequently,

electrons are shuttled via intramolecular steps to the FMN and

then to the diiron center, where reduction of NO is catalyzed (Vice-

nte et al., 2007; Vicente and Teixeira, 2005). There is evidence

(both from UV/vis spectroscopy and gel-permeation chromatog-

raphy) for complex formation between FlRd and its reductase

(Vicente and Teixeira, 2005), and the presence of the reductase

modulates the reduction potentials of the iron centers in FlRd: the
36, September 10, 2008 ª2008 Elsevier Ltd All rights reserved 1433
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Fe-Cys4 in the Rd domain and the diiron site in the lactamase do-

main. This indicates that the binding interface between FlRd and

FlRd reductase involves the Rd domain. Redox modulation of the

diiron center could arise either through binding of the reductase

(near the diiron center) or docking of the Rd domain (Figure 8).

The kinetics of the electron transfer reaction with FlRd reduc-

tase has been investigated for full-length FlRd and for the inde-

pendent Rd module (Vicente et al., 2007). It was observed that

the reduction of the Fe-Cys4 center (in the Rd domain) and the

FMN (in the FDP core) are kinetically synchronous and the elec-

tron transfer rates both display a linear dependence on the reduc-

tase concentration. This is an important observation, considering

that reduction of FMN by the Fe-Cys4 of Rd is an intramolecular

step. Moreover, it was proposed that four electrons entering

FlRd at the Rd domain are quickly equilibrated through the redox

cofactors. The Fe-Cys4 center in the Rd domain is a one-electron

acceptor/donor, whereas the redox and kinetic properties of the

reductase attest that it quickly and sequentially donates two elec-

trons without accumulation of the partially reduced FAD semiqui-

none. It was also found that the ionic strength dependence of the

reactionbetween the reductase and the Rd domain as a truncated

independent protein or as part of the full-length FlRd displays sim-

ilar profiles. The fact that the long-range electrostatic contribution

to the reaction with FlRd reductase is similar whether the Rd

domain is independent or tethered (as in FlRd) suggests that Rd

is weakly associated with the core domains of FlRd. To comply

with these features of the electron transfer process, it is envisaged

that the Rd domain is loosely accommodated at the binding inter-

face between FlRd and FlRd reductase. The SAXS data reveal the

Rd domain to be sufficiently flexible as to serve as a one-electron

shuttle between FlRd reductase and the FDP core of FlRd.

In summary, the quaternary structure of FlRd as revealed by

SAXS consists of a dimer of dimers with peripheral Rd domains

(Figures 4 and 6). Despite the presence of a linker and the con-

comitant ‘‘concentration effect,’’ the Rd module behaves as an

independent domain with sufficient mobility to shuttle electrons

from FlRd reductase to the FMN of the FDP core from where they

are transferred to the NO-reducing diiron site, thus mimicking the

situation of the two-domain FDPs which have mobile rubredox-

ins as immediate electron donor proteins.

Figure 8. Electrostatic Potentials of FDP

and Rd

Structural models of (A) the FDP core and (B) the Rd

module of FlRd, built in SWISS-MODEL (Arnold

etal., 2006) using the structuresofM. thermoacetica

FDP (PDB ID code 1YCH; Silaghi-Dumitrescu et al.,

2003) and C. pasteurianum rubredoxin (PDB ID

code 4RXN; (Watenpaugh et al., 1980). The dashed

circles indicate the approximate location of the FMN

and diiron cofactors in FDP. The surface maps were

generated using PyMOL (DeLano, 2002).

EXPERIMENTAL PROCEDURES

Sample Preparation

Samples of FlRd and its truncated domains were

obtained as previously described (Gomes et al.,

2002; Vicente and Teixeira, 2005) (Table 1). Each

protein was further washed through a PD-10

(Amersham) gel-filtration column to exchange the buffer to 50 mM Tris-HCl,

18% glycerol (pH 7.5). Protein concentrations were determined both by the bi-

cinchoninic acid method (Brown et al., 1989) and visible absorption spectros-

copy using known molar extinction coefficients (Gomes et al., 2000; Vicente

et al., 2007). The bicinchoninic acid assay was used to complement the quan-

tification by UV/visible spectroscopy (based on specific molar extinction coef-

ficients), which only accounts for fully loaded protein in terms of optically active

redox cofactors.

SAXS Data Collection and Processing

Synchrotron X-ray scattering data from solutions of the Rd domain, the FDP

core, and full-length FlRd were collected at the X33 beamline (DESY, Ham-

burg, Germany) (Roessle et al., 2007) using a MAR345 image plate detector.

The scattering patterns of all samples were measured at several solute con-

centrations c, ranging from 2 to 5.0 mg/ml. At a sample-detector distance of

2.7 m, the range of momentum transfer 0.1 < s < 5 nm�1 was covered (s =

4p sin[q]/l, where 2q is the scattering angle and l = 0.15 nm is the X-ray wave-

length). The data were processed using standard procedures in the program

package PRIMUS (Konarev et al., 2003). The forward scattering I0 and the radii

of gyration Rg were evaluated using the Guinier approximation (Guinier, 1939),

assuming that at very small angles (s < 1.3/Rg), the intensity is represented as

I(s) = I0 exp(�[sRg]2/3). The maximum dimensions Dmax were computed using

the indirect transform package GNOM (Svergun, 1992), which also provides

the distance distribution functions p(r).

The increase in molecular mass (MM) of the full-length FlRd compared to the

shorter construct was verified by the analysis of the forward scattering value I0
using the proportion MM�I0/c. In addition, the excluded (Porod) volumes Vp of

the solutes were also analyzed, calculated as (Porod, 1982)

V = 2p2Ið0Þ=
ZN

0

s2IðsÞds: (1)

In this calculation, an appropriate constant was subtracted from each data

point to force an s�4 decay of the intensity at higher angles following Porod’s

law (Porod, 1982) for homogeneous particles. For globular proteins, Porod

(i.e., hydrated) volumes in nm3 are approximately twice the MMs in kDa.

Ab Initio Shape Determination

Low-resolution shape analysis of the solutes was performed using the ab initio

program DAMMIN (Svergun, 1999), which represents the macromolecule by

an assembly of densely packed beads. Simulated annealing (SA) is employed

to build a compact interconnected configuration of beads inside a sphere with

the diameter Dmax that fits the experimental data Iexp(s) to minimize the discrep-

ancy c:

c2 =
1

N� 1

X
j

�
IexpðsjÞ � cIcalcðsjÞ

sðsjÞ

�2

; (2)
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where N is the number of experimental points, c is a scaling factor, and Icalc(s) and

s(sj) are the calculated intensity and the experimental error at the momentum

transfer sj, respectively. The shape reconstructions of FDP and FlRd were made

assuming no symmetry and also with P1, P2, and P222 symmetry constraints.

Molecular Modeling

The program SASREF (Petoukhov and Svergun, 2005) was employed for mo-

lecular modeling of the FDP core and the full-length FlRd based on the atomic

model of M. thermoacetica FDP (PDB ID code 1YCH; Silaghi-Dumitrescu et al.,

2005a; which of the known FDP structures is closest in sequence identity

[41%] to FlRd) and a homology model of the Rd domain (�55 residues) built

in SWISS-MODEL using the coordinates of Clostridium pasteurianum rubre-

doxin (PDB ID code 4RXN) as a template (Arnold et al., 2006). The linker be-

tween the FDP and Rd domains was represented by a randomly generated

self-avoiding Ca backbone of 24 amino acids with proper bond and dihedral

angles. SASREF uses SA to position the domains with respect to each other,

forming an interconnected assembly without steric clashes while minimizing

the discrepancy between the experimental data and the scattering profiles

computed from both the full-length model and the FDP core. The model scat-

tering is calculated based on the precomputed partial amplitudes of the sub-

units in the reference positions and orientations. The scattering from the

atomic models was calculated using the program CRYSOL (Svergun et al.,

1995), which either predicts theoretical scattering patterns or fits the experi-

mental data by adjusting the excluded volume and the contrast of the hydra-

tion layer. Distance restraints were applied to ensure the contacts between

the linker and the appropriate termini of the domains yielding an intercon-

nected chain (spring force potential was used as described in Petoukhov

and Svergun, 2005). Rigid-body modeling was performed using P222 symme-

try constraints. Distance restraints between the FDP monomers (His115-

Trp376, Met262-Gly26, Ser84-Trp263, and Gly331-Asp317) were applied to

maintain the dimer interface as in PDB ID code 1YCH.

For ab initio and rigid-body analysis, multiple runs were performed to verify

the stability of the solution, and the most typical reconstructions were selected

using the programs DAMAVER (Volkov and Svergun, 2003) and SUPCOMB

(Kozin and Svergun, 2001). The latter program aligns two arbitrary low- or

high-resolution models represented by ensembles of points by minimizing

a dissimilarity measure called normalized spatial discrepancy (NSD). For every

point (bead or atom) in the first model, the minimum value among the distances

between this point and all points in the second model is found, and the same is

done for points in the second model. These distances are added and normal-

ized against the average distances between the neighboring points for the two

models. Generally, NSD values close to unity indicate that the two models are

similar. The program DAMAVER generates the average model of the set of

superimposed structures and also specifies the most typical model (i.e., that

having the lowest average NSD with all the other models of the set).

Ensemble Optimization Method

The conformational space of FlRd was explored using the recently developed

EOM approach, which takes flexibility into account by allowing for the coexis-

tence of multiple conformations in solution (Bernado et al., 2007). EOM selects

appropriate ensembles of configurations from large pools of random models of

the protein. Even when a single model gives a reasonable fit, EOM allows one

to assess the range of different conformations which the flexible protein can

potentially adopt. Representative models were created by random generation

of the loops connecting Rd domains to the FDP core. The theoretical scattering

intensities of the randomized models were calculated using the program

CRYSOL (Svergun et al., 1995). The program GAJOE from the EOM package

(Bernado et al., 2007) employed a genetic algorithm to select from the pool

of structures the ensembles of curves (and subsequent 3D models) such

that the averages over the ensembles fitted the experimental data while

minimizing the discrepancy c (Equation 2). By running EOM multiple times it

is also possible to compare the Rg distributions of the selected structures

versus the original pool.

SUPPLEMENTAL DATA

Supplemental Data include three figures and can be found with this article

online at http://www.structure.org/cgi/content/full/16/9/1428/DC1/.
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