9,347 research outputs found

    Who is coming from Vanuatu to New Zealand under the new Recognised Seasonal Employer (RSE) program?

    Get PDF
    New Zealand’s new Recognised Seasonal Employer (RSE) program allows workers from the Pacific Islands to come to New Zealand for up to seven months to work in the horticulture and viticulture industries. One of the explicit objectives of the program is to encourage economic development in the Pacific. In this paper we report on the results of a baseline survey taken in Vanuatu, which allows us to examine who wants to participate in the program, and who is selected amongst those interested. We find the main participants are males in their late 20s to early 40s, most of whom are married and have children. Most workers are subsistence farmers in Vanuatu and have not completed more than 10 years of schooling. Such workers would be unlikely to be accepted under existing migration channels. Nevertheless, we find RSE workers from Vanuatu to come from wealthier households, and have better English literacy and health than individuals not applying for the program. Lack of knowledge about the policy and the costs of applying appear to be the main barriers preventing poorer individuals applying

    Instabilities in decelerating supersonic flows with applications to cosmic ray shocks

    Get PDF
    The nature of instabilities in cosmic ray shocks is investigated by using two distinct models for the shock wave. For wavelengths which are short relative to the thickness of the shock wave, the shock is treated as a smoothly decelerating low, and an appropriate JWKB type expansion is used to describe the perturbations to the flow. In this, the short wavelength regime, the presence of squeezing and an effective g renders strong cosmic ray shocks unstable in a way which is similar to instabilities in other supersonic flows, such as in de Laval nozzle flow or a heat conduction dominated shock wave. In the long wavelength limit, where the shock is treated as a discontinuous transition, a stability function is derived which, if negative, corresponds to unstable disturbances growing exponentially in time. In this case, it was found that if the cosmic ray fluid is relativistic (gamma sub c = 4/3) and the background plasma ideal (gamma = 5/3), then strong shocks are unstable

    Temperature Dependence of the Magnetic Susceptibility for Triangular-Lattice Antiferromagnets with spatially anisotropic exchange constants

    Get PDF
    We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular-lattices, using high temperature series expansions. We consider a model with two exchange constants, J1J_1 and J2J_2 on a lattice that interpolates between the limits of a square-lattice (J1=0J_1=0), a triangular-lattice (J2=J1J_2=J_1), and decoupled linear chains (J2=0J_2=0). In all cases, the susceptibility which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature, TpT_p. Scaling the exchange constants to get the same peak temperature, shows that the susceptibilities for the square-lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2_2CuCl4_4 and Cs2_2CuBr4_4 and to a number of organic molecular crystals. We find that the former (Cs2_2CuCl4_4 and Cs2_2CuBr4_4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.Comment: 10 pages, 9 figures and 1 table, revised versio

    Spin Bose-Metal phase in a spin-1/2 model with ring exchange on a two-leg triangular strip

    Get PDF
    Recent experiments on triangular lattice organic Mott insulators have found evidence for a 2D spin liquid in proximity to the metal-insulator transition. A Gutzwiller wavefunction study of the triangular lattice Heisenberg model with appropriate four-spin ring exchanges has found that the projected spinon Fermi sea state has a low variational energy. This wavefunction, together with a slave particle gauge theory, suggests that such spin liquid possesses spin correlations that are singular along surfaces in momentum space ("Bose surfaces"). Signatures of this state, which we refer to as a "Spin Bose-Metal" (SBM), are expected to be manifest in quasi-1D ladder systems: The discrete transverse momenta cut through the 2D Bose surface leading to a distinct pattern of 1D gapless modes. Here we search for a quasi-1D descendant of the triangular lattice SBM state by exploring the Heisenberg plus ring model on a two-leg strip (zigzag chain). Using DMRG, variational wavefunctions, and a Bosonization analysis, we map out the full phase diagram. Without ring exchange the model is equivalent to the J_1 - J_2 Heisenberg chain, and we find the expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange reveals a new gapless phase over a large swath of the phase diagram. Spin and dimer correlations possess particular singular wavevectors and allow us to identify this phase as the hoped for quasi-1D descendant SBM state. We derive a low energy theory and find three gapless modes and one Luttinger parameter controlling all power laws. Potential instabilities out of the zigzag SBM give rise to other interesting phases such as a period-3 VBS or a period-4 Chirality order, which we discover in the DMRG; we also find an interesting SBM state with partial ferromagnetism.Comment: 30 pages, 23 figure

    Discrete Lie Advection of Differential Forms

    Get PDF
    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC

    Spin Bose-Metal and Valence Bond Solid phases in a spin-1/2 model with ring exchanges on a four-leg triangular ladder

    Get PDF
    We study a spin-1/2 system with Heisenberg plus ring exchanges on a four-leg triangular ladder using the density matrix renormalization group and Gutzwiller variational wave functions. Near an isotropic lattice regime, for moderate to large ring exchanges we find a spin Bose-metal phase with a spinon Fermi sea consisting of three partially filled bands. Going away from the triangular towards the square lattice regime, we find a staggered dimer phase with dimers in the transverse direction, while for small ring exchanges the system is in a featureless rung phase. We also discuss parent states and a possible phase diagram in two dimensions.Comment: 4 pages, 5 figures, v3 is the print versio

    Ferromagnetism, paramagnetism and a Curie-Weiss metal in an electron doped Hubbard model on a triangular lattice

    Get PDF
    Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative inter-site hopping amplitudes (t<0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t>0 a large enhancement of the effective mass, ferromagnetism and a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e. ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. We propose that `Curie-Weiss metal' phase observed in NaxCoO2 is a consequence of the crossover from ``bad metal'' with incoherent quasiparticles at temperatures T>T* and Fermi liquid behavior with enhanced parameters below T*, where T* is a low energy coherence scale induced by strong local Coulomb electron correlations. We propose a model which contains the charge ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.Comment: 24 pages, 15 figures; accepted for publication in Phys. Rev.

    Universal subgap optical conductivity in quasi-one-dimensional Peierls systems

    Get PDF
    Quasi-one-dimensional Peierls systems with quantum and thermal lattice fluctuations can be modeled by a Dirac-type equation with a Gaussian-correlated off-diagonal disorder. A powerful new method gives the exact disorder-averaged Green function used to compute the optical conductivity. The strong subgap tail of the conductivity has a universal scaling form. The frequency and temperature dependence of the calculated spectrum agrees with experiments on KCP(Br) and trans-polyacetylene.Comment: 11 pages (+ 3 figures), LATEX (REVTEX 3.0

    Evidence from satellite altimetry for small-scale convection in the mantle

    Get PDF
    Small scale convection can be defined as that part of the mantle circulation in which upwellings and downwellings can occur beneath the lithosphere within the interiors of plates, in contrast to the large scale flow associated with plate motions where upwellings and downwellings occur at ridges and trenches. The two scales of convection will interact so that the form of the small scale convection will depend on how it arises within the large scale flow. Observations based on GEOS-3 and SEASAT altimetry suggest that small scale convection occurs in at least two different ways

    Evidence for changes in groundwater drought in temperate environments associated with climate change

    Get PDF
    There is currently a significant gap in our understanding of the effect of anthropogenic warming on groundwater drought. This is due to a number of factors including the limited availability of long groundwater level time series suitable for analysis, the low signal-to-noise ratios characteristic of many hydrological systems, and the infrequent nature of episodes of groundwater drought in temperate systems. Formal attribution of groundwater droughts due to anthropogenic warming is also challenging because of the potentially confounding influences of land use change and groundwater abstraction on groundwater drought. In the present study, we have not attempted to formally attribute groundwater droughts to climate change. Instead, we investigate how known centennialscale anthropogenic warming may be modifying the nature of groundwater droughts when other factors are discounted, and address the following question: how has the occurrence, duration, magnitude and intensity of groundwater drought, as expressed by changes in monthly Standardised Groundwater level Index (SGI) and in episodes of groundwater drought changed since 1891 under anthropogenic warming? Standardised indices of monthly groundwater levels (SGI), precipitation (SPI) and temperature (STI) are analysed, using two long, continuous monthly groundwater level data sets from the UK, for the period 1891 to 2015. Precipitation deficits are the main control on groundwater drought formation and propagation. However, long-term changes in groundwater drought include increases in the frequency and intensity of individual groundwater drought months, and increases in the frequency, magnitude and intensity of episodes of groundwater drought, are shown to be associated with anthropogenic warming over the study period. These is a transition from coincidence of episodes of groundwater and precipitation droughts at the end of the 19th century, to an increasing coincidence groundwater droughts with both precipitation droughts and with hot periods in the early 21st century. In the absence of long-term changes in precipitation deficits, it is inferred that the changing nature of groundwater droughts is due to changes in evapotranspiration (ET) associated with anthropogenic warming. Given the extent of shallow groundwater globally, anthropogenic warming may widely effect changes to groundwater drought characteristics in temperate environments
    • …
    corecore