Recent experiments on triangular lattice organic Mott insulators have found
evidence for a 2D spin liquid in proximity to the metal-insulator transition. A
Gutzwiller wavefunction study of the triangular lattice Heisenberg model with
appropriate four-spin ring exchanges has found that the projected spinon Fermi
sea state has a low variational energy. This wavefunction, together with a
slave particle gauge theory, suggests that such spin liquid possesses spin
correlations that are singular along surfaces in momentum space ("Bose
surfaces"). Signatures of this state, which we refer to as a "Spin Bose-Metal"
(SBM), are expected to be manifest in quasi-1D ladder systems: The discrete
transverse momenta cut through the 2D Bose surface leading to a distinct
pattern of 1D gapless modes. Here we search for a quasi-1D descendant of the
triangular lattice SBM state by exploring the Heisenberg plus ring model on a
two-leg strip (zigzag chain). Using DMRG, variational wavefunctions, and a
Bosonization analysis, we map out the full phase diagram. Without ring exchange
the model is equivalent to the J_1 - J_2 Heisenberg chain, and we find the
expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange
reveals a new gapless phase over a large swath of the phase diagram. Spin and
dimer correlations possess particular singular wavevectors and allow us to
identify this phase as the hoped for quasi-1D descendant SBM state. We derive a
low energy theory and find three gapless modes and one Luttinger parameter
controlling all power laws. Potential instabilities out of the zigzag SBM give
rise to other interesting phases such as a period-3 VBS or a period-4 Chirality
order, which we discover in the DMRG; we also find an interesting SBM state
with partial ferromagnetism.Comment: 30 pages, 23 figure