2,600 research outputs found
Pulmonary Vascular Tree Segmentation from Contrast-Enhanced CT Images
We present a pulmonary vessel segmentation algorithm, which is fast, fully
automatic and robust. It uses a coarse segmentation of the airway tree and a
left and right lung labeled volume to restrict a vessel enhancement filter,
based on an offset medialness function, to the lungs. We show the application
of our algorithm on contrast-enhanced CT images, where we derive a clinical
parameter to detect pulmonary hypertension (PH) in patients. Results on a
dataset of 24 patients show that quantitative indices derived from the
segmentation are applicable to distinguish patients with and without PH.
Further work-in-progress results are shown on the VESSEL12 challenge dataset,
which is composed of non-contrast-enhanced scans, where we range in the
midfield of participating contestants.Comment: Part of the OAGM/AAPR 2013 proceedings (1304.1876
Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer
GLORIA (Gimballed Limb Observer for Radiance Imaging of the
Atmosphere) is an airborne, imaging, infrared Fourier transform
spectrometer that applies the limb-imaging technique to perform
trace gas and temperature measurements in the Earth's atmosphere
with three-dimensional resolution. To ensure the traceability of these
measurements to the International Temperature Scale and thereby to
an absolute radiance scale, GLORIA carries an on-board calibration
system. Basically, it consists of two identical large-area and high-emissivity infrared radiators, which can be continuously and
independently operated at two adjustable temperatures in a range
from −50 °C to 0 °C during flight. Here we describe the radiometric
and thermometric characterization and calibration of the in-flight
calibration system at the Reduced Background Calibration Facility of
the Physikalisch-Technische Bundesanstalt. This was performed with a standard
uncertainty of less than 110 mK. Extensive investigations of the
system concerning its absolute radiation temperature and spectral
radiance, its temperature homogeneity and its short- and long-term
stability are discussed. The traceability chain of these
measurements is presented
Checking Whether an Automaton Is Monotonic Is NP-complete
An automaton is monotonic if its states can be arranged in a linear order
that is preserved by the action of every letter. We prove that the problem of
deciding whether a given automaton is monotonic is NP-complete. The same result
is obtained for oriented automata, whose states can be arranged in a cyclic
order. Moreover, both problems remain hard under the restriction to binary
input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2
A Fast Algorithm Finding the Shortest Reset Words
In this paper we present a new fast algorithm finding minimal reset words for
finite synchronizing automata. The problem is know to be computationally hard,
and our algorithm is exponential. Yet, it is faster than the algorithms used so
far and it works well in practice. The main idea is to use a bidirectional BFS
and radix (Patricia) tries to store and compare resulted subsets. We give both
theoretical and practical arguments showing that the branching factor is
reduced efficiently. As a practical test we perform an experimental study of
the length of the shortest reset word for random automata with states and 2
input letters. We follow Skvorsov and Tipikin, who have performed such a study
using a SAT solver and considering automata up to states. With our
algorithm we are able to consider much larger sample of automata with up to
states. In particular, we obtain a new more precise estimation of the
expected length of the shortest reset word .Comment: COCOON 2013. The final publication is available at
http://link.springer.com/chapter/10.1007%2F978-3-642-38768-5_1
Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells
Background: Hypoxia-induced genes are potential targets in cancer therapy. Responses to hypoxia have been extensively studied in vitro, however, they may differ in vivo due to the specific tumor microenvironment. In this study gene expression profiles were obtained from fresh human lung cancer tissue fragments cultured ex vivo under different oxygen concentrations in order to study responses to hypoxia in a model that mimics human lung cancer in vivo.Methods: Non-small cell lung cancer (NSCLC) fragments from altogether 70 patients were maintained ex vivo in normoxia or hypoxia in short-term culture. Viability, apoptosis rates and tissue hypoxia were assessed. Gene expression profiles were studied using Affymetrix GeneChip 1.0 ST microarrays.Results: Apoptosis rates were comparable in normoxia and hypoxia despite different oxygenation levels, suggesting adaptation of tumor cells to hypoxia. Gene expression profiles in hypoxic compared to normoxic fragments largely overlapped with published hypoxia-signatures. While most of these genes were up-regulated by hypoxia also in NSCLC cell lines, membrane metallo-endopeptidase (MME, neprilysin, CD10) expression was not increased in hypoxia in NSCLC cell lines, but in carcinoma-associated fibroblasts isolated from non-small cell lung cancers. High MME expression was significantly associated with poor overall survival in 342 NSCLC patients in a meta-analysis of published microarray datasets.Conclusions: The novel ex vivo model allowed for the first time to analyze hypoxia-regulated gene expression in preserved human lung cancer tissue. Gene expression profiles in human hypoxic lung cancer tissue overlapped with hypoxia-signatures from cancer cell lines, however, the elastase MME was identified as a novel hypoxia-induced gene in lung cancer. Due to the lack of hypoxia effects on MME expression in NSCLC cell lines in contrast to carcinoma-associated fibroblasts, a direct up-regulation of stroma fibroblast MME expression under hypoxia might contribute to enhanced aggressiveness of hypoxic cancers
Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes
Mesothelioma mortality in Europe: impact of asbestos consumption and simian virus 40
BACKGROUND: It is well established that asbestos is the most important cause of mesothelioma. The role of simian virus 40 (SV40) in mesothelioma development, on the other hand, remains controversial. This potential human oncogene has been introduced into various populations through contaminated polio vaccines. The aim of this study was to investigate whether the possible presence of SV40 in various European countries, as indicated either by molecular genetic evidence or previous exposure to SV40-contaminated vaccines, had any effect on pleural cancer rates in the respective countries. METHODS: We conducted a Medline search that covered the period from January 1969 to August 2005 for reports on the detection of SV40 DNA in human tissue samples. In addition, we collected all available information about the types of polio vaccines that had been used in these European countries and their SV40 contamination status. RESULTS: Our ecological analysis confirms that pleural cancer mortality in males, but not in females, correlates with the extent of asbestos exposure 25 – 30 years earlier. In contrast, neither the presence of SV40 DNA in tumor samples nor a previous vaccination exposure had any detectable influence on the cancer mortality rate in neither in males (asbestos-corrected rates) nor in females. CONCLUSION: Using the currently existing data on SV40 prevalence, no association between SV40 prevalence and asbestos-corrected male pleural cancer can be demonstrated
- …