89 research outputs found

    Restrictions on the coherence of the ultrafast optical emission from an electron-hole pairs condensate

    Full text link
    We report on the transfer of coherence from a quantum-well electron-hole condensate to the light it emits. As a function of density, the coherence of the electron-hole pair system evolves from being full for the low density Bose-Einstein condensate to a chaotic behavior for a high density BCS-like state. This degree of coherence is transfered to the light emitted in a damped oscillatory way in the ultrafast regime. Additionally, the photon field exhibits squeezing properties during the transfer time. We analyze the effect of light frequency and separation between electron and hole layers on the optical coherence. Our results suggest new type of ultrafast experiments for detecting electron-hole pair condensation.Comment: 4 pages,3 figures, to be published in Physical Review Letters. Minor change

    Le and Olaya-Castro Reply:

    Get PDF

    Transient synchronisation and quantum coherence in a bio-inspired vibronic dimer

    Get PDF
    Synchronisation is a collective phenomenon widely investigated in classical oscillators and, more recently, in quantum systems. However it remains unclear what features distinguish synchronous behaviour in these two scenarios. Recent works have shown that investigating synchronisation dynamics in open quantum systems can give insight into this issue. Here we study transient synchronisation in a bio-inspired vibronic dimer, where electronic excitation dynamics is mediated by coherent interactions with intramolecular vibrational modes. We show that the synchronisation dynamics of local mode displacements exhibit a rich behaviour which arises directly from the distinct time-evolutions of different vibronic quantum coherences. Furthermore, our study shows that coherent energy transport in this bio-inspired system is concomitant with the emergence of positive synchronisation between mode displacements. Our work provides further understanding of the relations between quantum coherence and synchronisation in open quantum systems and suggests an interesting role for coherence in biomolecules, that of promoting synchronisation of vibrational motions driven out of thermal equilibrium

    Generation of three-qubit entangled states using coupled multi-quantum dots

    Full text link
    We discuss a mechanism for generating a maximum entangled state (GHZ) in a coupled quantum dots system, based on analytical techniques. The reliable generation of such states is crucial for implementing solid-state based quantum information schemes. The signature originates from a remarkably weak field pulse or a far off-resonance effects which could be implemented using technology that is currently being developed. The results are illustrated with an application to a specific wide-gap semiconductor quantum dots system, like Zinc Selenide (ZnSe) based quantum dots.Comment: 8 pages, 2 figure

    Strong Quantum Darwinism and Strong Independence are Equivalent to Spectrum Broadcast Structure

    Get PDF
    How the objective everyday world emerges from the underlying quantum behavior of its microscopic constituents is an open question at the heart of the foundations of quantum mechanics. Quantum Darwinism and spectrum broadcast structure are two different frameworks providing key insight into this question. Recent works, however, indicate these two frameworks can lead to conflicting predictions on the objectivity of the state of a system interacting with an environment. Here, we provide a resolution to this issue by defining strong quantum Darwinism and proving that it is equivalent to spectrum broadcast structure when combined with strong independence of the subenvironments. We further show that strong quantum Darwinism is sufficient and necessary to signal state objectivity without the requirement of strong independence. Our Letter unveils the deep connection between strong quantum Darwinism and spectrum broadcast structure, thereby making fundamental progress toward understanding and solving the emergence of classicality from the quantum world. Together they provide us a sharper understanding of the transition in terms of state structure, geometry, and quantum and classical information

    Objectivity (or lack thereof): Comparison between predictions of quantum Darwinism and spectrum broadcast structure

    Get PDF
    Quantum Darwinism and spectrum broadcast structure describe the emergence of objectivity in quantum systems. However, it is unclear whether these two frameworks lead to consistent predictions on the objectivity of the state of a quantum system in a given scenario. In this paper, we jointly investigate quantum Darwinism and spectrum broadcasting, as well as the subdivision of quantum Darwinism into accessible information and quantum discord, in a two-level system interacting with an N-level environment via a random matrix coupling. We propose a partial trace method to suitably and consistently partition the effective N-level environment and compare the predictions with those obtained using the partitioning method proposed by Perez [Phys. Rev. A 81, 052326 (2010)]. We find that quantum Darwinism can apparently emerge under the Perez trace even when spectrum broadcast structure does not emerge, and the majority of the quantum mutual information between system and environment fractions is in fact quantum in nature. This work therefore shows there can be discrepancies between quantum Darwinism and the nature of information and spectrum broadcast structure

    Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature

    Get PDF
    Advancing the debate on quantum effects in light-initiated reactions in biology requires clear identification of non-classical features that these processes can exhibit and utilize. Here we show that in prototype dimers present in a variety of photosynthetic antennae, efficient vibration-assisted energy transfer in the sub-picosecond timescale and at room temperature can manifest and benefit from non-classical fluctuations of collective pigment motions. Non-classicality of initially thermalized vibrations is induced via coherent exciton-vibration interactions and is unambiguously indicated by negativities in the phase-space quasi-probability distribution of the effective collective mode coupled to the electronic dynamics. These quantum effects can be prompted upon incoherent input of excitation. Our results therefore suggest that investigation of the non-classical properties of vibrational motions assisting excitation and charge transport, photoreception and chemical sensing processes could be a touchstone for revealing a role for non-trivial quantum phenomena in biology

    Entanglement of a microcanonical ensemble

    Get PDF
    We replace time-averaged entanglement by ensemble-averaged entanglement and derive a simple expression for the latter. We show how to calculate the ensemble average for a two-spin system and for the Jaynes-Cummings model. In both cases the time-dependent entanglement is known as well so that one can verify that the time average coincides with the ensemble average.Comment: 10 page

    Ensemble averaged entanglement of two-particle states in Fock space

    Full text link
    Recent results, extending the Schmidt decomposition theorem to wavefunctions of identical particles, are reviewed. They are used to give a definition of reduced density operators in the case of two identical particles. Next, a method is discussed to calculate time averaged entanglement. It is applied to a pair of identical electrons in an otherwise empty band of the Hubbard model, and to a pair of bosons in the the Bose-Hubbard model with infinite range hopping. The effect of degeneracy of the spectrum of the Hamiltonian on the average entanglement is emphasised.Comment: 19 pages Latex, changed title, references added in the conclusion

    Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation

    Full text link
    We derive a many-site version of the non-Markovian time-convolutionless polaron master equation [S. Jang et al., J. Chem Phys. 129, 101104 (2008)] to describe electronic excitation dynamics in multichromophoric systems. By treating electronic and vibrational degrees of freedom in a combined frame (polaron frame), this theory is capable of interpolating between weak and strong exciton-phonon coupling and is able to account for initial non-equilibrium bath states and spatially correlated environments. Besides outlining a general expression for the expected value of any electronic system observable in the original frame, we also discuss implications of the Markovian and secular approximations highlighting that they need not hold in the untransformed frame despite being strictly satisfied in the polaron frame. The key features of the theory are illustrated using as an example a four-site subsystem of the Fenna-Mathew-Olson light-harvesting complex. For a spectral density including a localised high-energy mode, we show that oscillations of site populations may only be observed when non-equilibrium bath effects are taken into account. Furthermore, we illustrate how this formalism allows us to identify the electronic or vibrational origin of the oscillatory dynamics.Comment: 13 pages, 6 figures; minor corrections made; accepted for publication in Journal of Chemical Physic
    corecore