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Synchronisation is a collective phenomenon widely investigated in classical oscillators and, more
recently, in quantum systems. However, it remains unclear what features distinguish synchronous
behaviour in these two scenarios. Recent works have shown that investigating the dynamics of
synchronisation in open quantum systems can give insight into this issue. Here we study tran-
sient synchronisation in a bio-inspired vibronic dimer, where the dynamics of electronic excitation
is mediated by coherent interactions with intramolecular vibrational modes. We show that the
synchronisation dynamics of the displacement of these local modes exhibit a rich behaviour which
arises directly from the distinct time-evolutions of different vibronic quantum coherences. Further-
more, our study shows that coherent energy transport in this bio-inspired system is concomitant
with the emergence of positive synchronisation between mode displacements. Our work provides
further understanding of the relations between quantum coherence and synchronisation in open
quantum systems and suggests an interesting role for coherence in biomolecules, that is promoting
the synchronisation of vibrational motions driven out of thermal equilibrium.

I. INTRODUCTION

Synchronisation can be broadly defined as the adjust-
ment of rhythms of oscillating objects due to their weak
interaction [1]. This description corresponds to numer-
ous processes throughout the natural world that occur on
a wide range of length and time scales. This is especially
true in living systems, where synchronisation is common
and is often closely related to biological function [2, 3].
On the metre scale, the synchronous flashing of male fire-
flies aids each individual in reproduction [2] and on the
micrometre scale, cardiac cells synchronise contractions
with their neighbours [3]. The question of whether this
phenomenon persists on even smaller length scales such
as that of individual biomolecules (nanometre) and time
scales such as the relaxation times of intramolecular mo-
tions (picoseconds) has not been investigated. On these
length and time scales quantum phenomena cannot be
neglected and synchronisation, if it occurs, could exhibit
features that have no equivalence in the classical regime
[4–9].

An interesting biophysical scenario in which one can
explore synchronisation in the quantum regime, and at
the same time investigate its possible relations to coher-
ence and biological function, is during electronic exci-
tation transport in photosynthetic complexes [10, 11],
where coherent dynamics has been observed lasting sev-
eral hundred femtoseconds [12–17]. The leading hypoth-
esis for the mechanism underlying long-lived coherent dy-
namics in these biophysical systems is the quantum me-
chanical exchange of energy between excitonic and vibra-
tional degrees of freedom [16–25]. Despite some contro-
versy surrounding the observations [26], there remains
a widespread interest in understanding the intertwined
dynamics of electronic and vibrational motions during
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energy transfer. In this context, it is timely and interest-
ing to investigate whether molecular vibrations may be
synchronised during ultra-fast energy transfer processes
in photosynthetic complexes and, if such synchronisation
happens, what its relations to coherence and function
could be.

The form of synchronisation that we study here should
be described as transient, emphasising that it occurs be-
fore relaxation to the ground state, and spontaneous,
meaning it arises due to the interactions within the quan-
tum system considered and not due to the influence of an
external fixed-frequency driving force [27]. We note that
this differs from other investigations of synchronisation
in self-sustained quantum oscillators [4, 8].

Transient spontaneous quantum synchronisation (re-
ferred to from here on as synchronisation) has been re-
cently investigated in a range of open quantum systems
[27–31]. In the simplest case of coupled two-level sys-
tems (TLSs), it has been shown that synchronisation
cannot occur in the presence of dephasing channels alone
and dissipation appears to be essential [28]. In quantum
harmonic oscillator (QHO) networks, adjusting the cou-
pling between oscillators can create asymptotically syn-
chronised states that avoid dissipation altogether [31];
and in hybrid TLS-QHO systems the form of coupling of
QHOs to TLSs can induce and control synchronisation
between QHOs with a well-defined phase difference [30].
From these works it can be concluded that the specific
forms of the decoherence channels and of the interactions
among quantum subsystems play a pivotal role in reach-
ing synchronisation. However, exactly how the interplay
between coherent dynamics and decoherence enables syn-
chronisation in a particular time scale, or how coherences
may relate to synchronisation is not fully understood.
Here, we show that the investigation of synchronisation
in a bio-inspired vibronic dimer provides interesting in-
sights on these open questions.

In particular, we investigate the synchronisation of
molecular motions during electronic energy transport in
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a prototype photosynthetic vibronic dimer where two
local excited electronic states interact with each other
and with local quasi-coherent intramolecular modes. The
modes are subject to local dissipation into thermal baths
while the electronic subsystem undergoes pure dephas-
ing. We provide an intuitive explanation of the mecha-
nism behind synchronisation by analysing the eigenstate
coherences that influence the oscillatory patterns of the
local positions being synchronised. Our results indicate
that interferences between vibronic coherences can re-
sult in negative and positive synchronisation. The pe-
riods of negative and positive synchronisation reflect a
rich and distinctive interplay between coherence and de-
coherence mechanisms at different timescales. Further-
more, we show that a faster onset of synchronisation
is correlated with a larger degree of coherent excitation
transport. From a biological standpoint, our study sug-
gests local mode synchronisation may be present during
energy transfer in some photosynthetic pigment-protein
complexes at physiological temperatures.

II. MODELLING SYNCHRONISATION IN
EXCITON-VIBRATION DIMERS

In the following sections we describe the model and
methods used. In Section II A we introduce the Hamil-
tonian for the exciton-vibration dimer model that can
represent dimers in a variety of photosynthetic pigment-
protein complexes. In Section II B we describe the
Markovian master equation that phenomenologically de-
scribes the open quantum system dynamics of the
exciton-vibration dimer and briefly discuss our numer-
ical methods used to solve it. In Section II C we describe
the measure used to quantify synchronisation and discuss
its limitations.

A. The Exciton-Vibration Dimer

Photosynthetic light-harvesting proteins exhibit com-
plex excitation transfer (ET) dynamics due to an overlap
of energy scales in electronic and vibrational degrees of
freedom and the timescales of their associated coherent
and incoherent processes [10]. Experiments and theory
suggest that these complexes are capable of sustaining
quantum coherence at room temperature that lasts sev-
eral hundred femtoseconds, thereby suggesting a func-
tional role for coherent dynamics [10, 11]. Here we con-
sider a prototype light-harvesting unit, which we call an
exciton-vibration dimer model, formed by a pair of chro-
mophores whose local electronic excitations interact with
quasi-coherent vibrational modes [18, 22].

Let the chromophores have single excited states |ei=1,2〉
of energy ei=1,2 which interact via dipole-dipole coupling
of strength V and are both locally coupled to a quan-
tised intramolecular mode of energy ωi=1,2 with strength
gi=1,2. The system has a total Hamiltonian of the form:

VΔe

|e1⟩

|e2⟩

ω1

ω2

kBT

kBT

g1

g2

Γth

Γth

Γdeph

≈

≈

Γdeph

X1

X2

FIG. 1. Schematic diagram of the exciton-vibration dimer.
Two chromophores (subscripts 1 and 2) with single excited
states |ei〉 interacting via dipole-dipole coupling of strength
V . Each electronic state is coupled linearly with strength
g to a harmonic mode of energy ω. Electronic sub-system
(blue oval) experiences pure dephasing of rate Γdeph, each
mode dissipates into separate thermal baths (red ovals) of
temperature kBT at rate Γth.

H = Hel + Hvib + Hel−vib. The electronic Hamiltonian
reads:

Hel = e1|e1〉〈e1|+e2|e2〉〈e2|+V |e2〉〈e1|+V ∗|e1〉〈e2| (1)

and its eigenstates are delocalised electronic states known
as excitons |Ed=1,2〉 with energies:

E1 =
1

2

(
e1 + e2 −

√
∆e2 + 4|V |2

)
E2 =

1

2

(
e1 + e2 +

√
∆e2 + 4|V |2

)
,

(2)

where ∆e = e2 − e1 and |V | =
√
V V ∗.

The unitary rotation U(θ) which diagonalises Hel to
create an excitonic Hamiltonian Hexc = U(θ)HelU

†(θ) =
E1|E1〉〈E1|+ E2|E2〉〈E2| has the form [32]:

U =

(
cos θ sin θ
− sin θ cos θ

)
(3)

where θ = 1
2 arctan(2|V |/∆e) is referred to as the mixing

angle and is an effective measure of delocalisation of the
electronic subsystem or the exciton size.

The bare vibrational Hamiltonian reads:

Hvib = ω1b
†
1b1 + ω2b

†
2b2 (4)

where b†i=1,2(bi=1,2) are the creation (annihilation) opera-
tors for the modes. The eigenstates ofHvib are fock states
which we write as: |n1〉⊗ |n2〉 where n are the fock state
numbers and subscripts indicate the mode subspace.

The interaction Hamiltonian reads Hel−vib =

g1|e1〉〈e1|(b1 + b†1) + g2|e2〉〈e2|(b2 + b†2) where we have
assumed a linear coupling between mode position and
electronic states [33, 34]. We define the electronic oper-
ators in the exciton basis as Θi = U(θ)|ei〉〈ei|U†(θ) and
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insert into Hel−vib to give:

Hexc−vib = g1Θ1(b1 + b†1) + g2Θ2(b2 + b†2) (5)

The final exciton-vibration Hamiltonian is then:

H =E1|E1〉〈E1|+ E2|E2〉〈E2|

+ ω1b
†
1b1 + ω2b

†
2b2

+ g1Θ1X1 + g2Θ2X2

(6)

where we have introduced the position operator for each

mode Xi=1,2 = bi + b†i . The eigenstates of H are exciton-
vibrational which we can represent in the local basis as:

|ψj〉 =
∑
d=1,2

αd|Ed〉 ⊗
M∑

n1=1

βn1
|n1〉 ⊗

M∑
n2=1

γn2
|n2〉

=
∑

d,n1,n2

c(d, n1, n2)|Ed, n1, n2〉
(7)

where eigenstates |ψj〉 are labelled in ascending energy.
To obtain convergent dynamics we account for a maxi-
mum occupation M = 8 in each mode.

In this paper we investigate the synchronisation of os-
cillations in the expectation value of the position operator
〈Xi〉 for each mode, which we refer to as local mode dis-
placements. We assume equal frequencies ω1 = ω2 = ω
and identical coupling strengths g1 = g2 = g. We also
consider the regime of weak electronic coupling where
∆E ≈ ω > g > V which is characteristic of chromophore
pairs present in a variety of light-harvesting proteins
[13, 18, 19, 23, 35–38]. In this regime excitons are not
fully delocalised and excitonic energies are close to the
local energies. The resultant quasi-localised nature of
eigenstates gives validity to our analysis of synchronisa-
tion of local mode displacements.

B. Open Quantum System Model

For simplicity, we assume Markovian relaxation pro-
cesses described in the Lindblad form:

ρ̇(t) = −i[H, ρ(t)] +Ddeph[ρ(t)] +Dth[ρ(t)], (8)

where ρ(t) is the exciton-vibration density ma-
trix and the Lindblad-form superoperators Dν [ρ] =
Γν
(
OνρO

†
ν − 1

2ρO
†
νOν − 1

2O
†
νOνρ

)
for the incoherent op-

erator Oν at rate Γν . We assume local pure dephasing
processes on the electronic sub-system [39, 40] with op-
erators |e1〉〈e1| and |e2〉〈e2| at equal rates of Γdeph =[0.1
ps]−1 such that exciton coherence decays in approxi-
mately 0.5 ps as inferred from experimental evidence of
algal photosynthetic protein PC645 [19]. Each mode is
assumed to undergo relaxation [40] due to thermal reser-
voirs at temperature 298K (207.1 cm−1) which is repre-
sented by transition operators b1 and b2 at rate Γth(1+B)

and b†1 and b†2 at rate ΓthB. Here B = (e
ω

kBT −1)−1 is the

∆e V ω g kBT Γth Γdeph

1042 92 1111 267.1 207.1 [1ps]−1 [0.1ps]−1

TABLE I. Parameters used for numerical calculations repre-
senting the central dimer in the cryptophyte antennae PE545
(PEB50/61) [18, 38]. All units in spectroscopic wavenumbers

cm−1 except for the final two columns which are specified in
table.

mean number of quanta in a thermally occupied mode of
frequency ω and Γth =[1 ps]−1 is the rate at which modes
equilibrate. Table I summarises the parameters consid-
ered.

To proceed numerically we linearise the master equa-
tion:

|ρ̇(t)〉〉 = L|ρ(t)〉〉 (9)

where L is the Liouvillian superoperator and |ρ(t)〉〉 are
flattened density matrices. We solve this ordinary differ-
ential equation in Python 3 with packages NumPy and
SciPy and author generated scripts.

Since we are interested in the process of synchronisa-
tion during energy transfer, we fix the initial electronic
state to be the higher energy excitonic state |E2〉 and
assume that both intramolecular modes are initially in
thermal equilibrium with their respective baths. This
results in the initial state:

ρ(0) = |E2〉〈E2| ⊗ ρth1 ⊗ ρth2 (10)

where ρthi =
∑
ni
Pni |ni〉〈ni| and Pni =(

1− e
−ω
kBT

)
e
−niω

kBT .

C. Measuring Synchronisation

0.0 0.2 0.4 0.6 0.8 1.0
Phase Lag  ( )

1.0

0.5

0.0

0.5

1.0

C f
1,

f 2

FIG. 2. Value of synchronisation measure Cf1,f2 for two iden-
tical sinusoids as a function of their phase shift φ. f1 =
sin(at), f2 = sin(at+ φ), ∆t = 1/a.

To quantify synchronisation between signals we adopt
a commonly used measure based on the Pearson corre-
lation factor [41]. Defined generally for any two time
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dependent functions f1(t) and f2(t):

Cf1,f2(t|∆t) =

∫ t+∆t

t
δf1δf2dt( ∫ t+∆t

t
δf2

1 dt
∫ t+∆t

t
δf2

2 dt
)1/2 (11)

where δf = f− f̄ , f̄ = 1
∆t

∫ t+∆t

t
f(t′)dt′ is a time average

and ∆t is the averaging window.
This function returns a continuous value in the range

of -1 to 1 corresponding to a phase shift between f1 and
f2 of π to 0. We choose this function for its time de-
pendent quantitative measure of synchronisation and for
its wide use in the quantum synchronisation literature
[28, 29, 31, 42]. An analysis of different synchronisa-
tion measures [41] states that the Pearson correlation fac-
tor returns a value of 1 for positive synchronisation (in-
phase), -1 for negative synchronisation (π out of phase)
and 0 for asynchrony. Here however we note that, by an
appropriate choice of ∆t to be as close as possible to the
time period of the dominant frequency in f1,2(t), the syn-
chronisation measure in fact indicates the phase differ-
ence between two oscillating signals. Therefore any con-
stant value of Cf1,f2(t) corresponds to a constant phase
between the signals e.g. Cf1,f2(t) = 0 corresponds to a
phase difference of π/2 at time t. A characterisation of
this relationship is presented in Figure 2 where the value
of the synchronisation function is plotted as a function
of constant phase difference, φ, between two perfect si-
nusoids. Based on this, we define our condition for a
synchronised state as a constant value in Cf1,f2(t) over
time.

III. RESULTS

In the following sections we present and explain the
main findings of this paper. In Section III A we intro-
duce our exciton-vibration coherences description of syn-
chronisation by considering the purely coherent dynam-
ics of the dimer. In Section III B we show that when
dissipative processes are included, spontaneous synchro-
nisation of the displacements of intramolecular modes in
exciton-vibration dimers emerges and it is accompanied
by a negatively synchronised transient. We illustrate how
this synchronisation can be understood as the dominance
of a specific exciton-vibration coherence over a set of com-
peting coherences that contribute to oscillatory dynamics
in the position of the modes. Finally we provide a qual-
itative explanation for the dominance of one coherence
over others. In Section III C we demonstrate a correla-
tion between coherent energy transfer and the time taken
to reach positive synchronisation.

A. Closed System Dynamics and the Conditions
for Synchronisation

In order to understand the dynamical emergence of
synchronisation between the positions of intramolecular

modes we begin by exploring the time dependence of the
expected values of the position operators, 〈Xi(t)〉.

In the basis of system eigenstates, the density ma-
trix of the exciton-vibration systems reads ρ(t) =∑
j,k ρjk(t)|ψj〉〈ψk| with ρjk(t) = 〈ψj |ρ(t)|ψk〉. The ex-

pectation value 〈Xi(t)〉 becomes

〈Xi(t)〉 = Tr
{
Xiρ(t)

}
=
∑
l

〈ψl|
(
Xi

∑
j,k

ρjk(t)|ψj〉〈ψk|
)
|ψl〉

=
∑
j,k

ρjk(t)〈ψk|Xi|ψj〉

=
∑
j,k

ρjk(t)Xi,kj

(12)

where Xi,kj = 〈ψk|Xi|ψj〉. Equation 12 indicates that
the time-evolution of local positions are given by the ma-
trix elements ρjk(t), yet the ability to exhibit synchro-
nised behaviour depends critically on the form of Xi,kj

as it is the only source of difference between 〈X1(t)〉 and
〈X2(t)〉.

To explore the consequences of Equation 12 in more de-
tail we analyse whether synchronisation can occur in the
closed quantum system whose dynamics is solely given
by the system Hamiltonian H. Let us denote ρH(t) as
the density matrix of the closed system, which evolves
according to:

ρH(t) =
∑
j,k

ρjk(0)eiΩkjt|ψj〉〈ψk|. (13)

Here ρjk(0) = 〈ψj |ρ(0)|ψk〉 are the populations (j = k)
and coherences (j 6= k) of the initial state while Ωkj =
εk − εj where εj are the eigenenergies of H. One can
therefore see that in a closed quantum dynamics only
coherences will contribute oscillatory components, with
specific frequencies Ωkj , to the dynamics of 〈Xi(t)〉.

To exhibit synchronisation we require oscillations in
〈X1(t)〉 to align in frequency and phase with 〈X2(t)〉 for
an extended period of time. Using Equations 12 and 13
this requires the equality:∑

j,k

ρjk(0)eiΩjktX1,kj =
∑
j,k

ρjk(0)eiΩjktX2,kj (14)

for the oscillating components j 6= k. Equation 14 is
trivially true if the initial state is an eigenstate of H.
However this cannot be considered synchronised as there
will be no time evolution at all. Hence Equation 14 can
only be satisfied (and be non-zero) if the initial state
ρ(0) is such that element ρjk(0) is zero when elements
X1,kj 6= X2,kj . The only ρ(0) that can fulfil these criteria
contains either a single (or a specific combination of)
eigenstate coherence(s) |ψj〉〈ψk|.

For the system under consideration, we identify the
seven largest position matrix elements Xi,kj contribut-
ing to the position dynamics and present their associ-
ated exciton-vibration coherences |ψj〉〈ψk| and frequen-
cies, Ωkj , in Table II. Examining these values shows that
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|ψ0〉〈ψ2| |ψ0〉〈ψ3| |ψ1〉〈ψ4| |ψ1〉〈ψ5| |ψ3〉〈ψ7| |ψ3〉〈ψ8| |ψ1〉〈ψ3|
Ωkj (cm−1) 1111.0 1125.0 1102.6 1111.0 1111.0 1119.2 81.0
〈ψk|X1|ψj〉 0.707 -0.637 0.767 0.707 0.707 -0.935 -0.174
〈ψk|X2|ψj〉 0.707 0.637 -0.767 0.707 0.707 0.935 0.174
〈ψk|σx|ψj〉 0.000 0.385 0.340 0.000 0.000 0.384 0.196

〈ψk|
(
|01〉〈01| ⊗ |02〉〈02|

)
|ψj〉 0.161 -0.144 -0.131 0.133 0.032 0.026 -0.351

TABLE II. Seven largest amplitude exciton-vibration coherences. Top row is the associated oscillation frequency from Equation
12. The remaining rows are the matrix elements corresponding to coherence |ψj〉〈ψk| of different operators which (in table
order) represent: the coupling to position of mode 1, coupling to position of mode 2, coupling to inter-exciton coherence,
coupling to ground state of both modes.

in the parameter regime considered (specifically ω1 = ω2,
see Section IV for more details) the position matrix el-
ements fall into two distinct groups: those for which
X1,kj = X2,kj and those for which X1,kj = −X2,kj .
For the latter set, the amplitude scaling of -1 results in
a phase factor of π between 〈X1(t)〉 and 〈X2(t)〉. For
example a ρ(0) consisting of |ψ1〉〈ψ5| and |ψ3〉〈ψ7| and
no other coherences result in oscillations of frequency
1111.0 cm−1 with no phase separation between 〈X1(t)〉
and 〈X2(t)〉. Similarly a combination of only |ψ1〉〈ψ4|
and |ψ3〉〈ψ8| would result in oscillations at a frequency
between 1102.6 cm−1 and 1109.2 cm−1 except with a con-
stant phase separation of π. Both of these scenarios can
be identified as synchronised as there is a constant phase
difference over time: in the former the displacements are
positively synchronised and in the latter they are nega-
tively synchronised. A combination of the two groups of
coherences however would create interferences yielding a
cyclic phase change between 〈Xi(t)〉.

Whilst it is possible to find an initial state in which
the dynamics of 〈Xi(t)〉 evolve in a synchronised way,
this cannot be classed as spontaneous synchronisation
as it has not emerged from an initially non-synchronised
state. In the closed system evolution, the ratio of these
coherences is determined only by the initial state ρ(0)
thereby fixing the frequency composition and precluding
that there can be no dynamical emergence of synchroni-
sation. The fact that synchronisation cannot emerge in
the closed quantum system concurs with previous studies
of coupled TLSs which show that synchronisation cannot
occur in the presence of dephasing alone and some energy
loss is required [28]. This analysis allows us to postulate a
mechanism for synchronisation in the open system which
is as follows: In the presence of dissipation we would
expect one (or a set) of coherences to emerge with a sig-
nificantly larger amplitude than the others allowing it to
dominate the dynamics of 〈Xi(t)〉 and produce a constant
phase difference in 〈Xi(t)〉.

Figure 3a displays the numerical results of evolution of
〈Xi(t)〉 and the correlation measure C〈X1〉〈X2〉(t) in the
closed system with initial state ρ(0) (Equation 10). As
expected, we see a large range of frequency oscillations
in 〈Xi(t)〉. The value of C〈X1〉〈X2〉(t) changes in a cyclic
pattern, indicating a continuous change in phase between
the between the oscillations and a clear difference in fre-

quency compositions. The frequency components in each
〈Xi(t)〉 can be resolved by taking the real part of the
Fourier Transform (FT) which we present in Figure 3b.
We note here how the frequencies present are exactly
those in Table II and that the frequencies that corre-
spond to negative synchronisation can be clearly seen as
those which have opposite sign in the FT.

Figure 3c displays the short-time dynamics of the real
parts of the five exciton-vibration coherences that domi-
nate the evolution of 〈Xi(t)〉 (see Equation 12), weighted
by their associated position matrix elements. Inter-
ference between these coherences generate the overall
〈Xi(t)〉 signals. Coherences |ψ1〉〈ψ5| and |ψ3〉〈ψ7| (bold
lines) have identical frequencies and remain in phase
throughout, whereas coherences |ψ1〉〈ψ4| and |ψ3〉〈ψ7|
(dotted lines) begin to accumulate a phase difference
due to their differing frequencies. The phase shift over
time manifests as an oscillation in 〈Xi(t)〉 at a frequency
equal to the differences between the pairs of Ωkj involved.
These are 8 cm−1 (time period of 4.2 ps) and 17 cm−1

(time period of 1.9 ps) which explains the approximate 2
ps periodicity seen in Figure 3a. The oscillation of period
0.4 ps is due to interference with low frequency coherence
|ψ1〉〈ψ3| (dotted line slowly changing). It is clear that no
single coherence dominates the dynamics and that syn-
chronisation does not emerge from the chosen initial state
in the closed system evolution.

B. Open System Dynamics and the Emergence of
Synchronisation

To understand how a synchronised state can emerge
from a non-synchronised state we must understand the
form of ρjk(t) in the open quantum system. Solving
Equation 8 for an element jk results in a set of coupled
differential equations:

ρ̇jk(t) = iΩjkρjk(t) +
∑
α,α′

Rj,k,α,α′ρα,α′(t) (15)

where Rj,k,α,α′ is commonly known as the Redfield ten-
sor which captures the dependence of each ρj,k on all
other matrix elements as induced by the local dissipa-
tors. In this case we cannot say that each coherence
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FIG. 3. Coherent evolution of excited vibronic dimer as described in Section II. Initial state is Equation 10 and relevant
parameters are listed in Table I (as this is closed system evolution the dissipation and dephasing rates are not applicable). (a)
Evolution of expectation value of intramolecular mode positions 〈Xi(t)〉 and their synchronisation C〈X1〉,〈X2〉(t). (b) Real part
of Fourier Transform of full time 〈Xi(t)〉 (c) Evolution of Real part of exciton-vibration coherences scaled by their coupling to
〈X1(t)〉 [TOP] and 〈X2(t)〉 [BOTTOM].

|ψj〉〈ψk|(t) consists of only one single oscillation fre-
quency Ωjk. However our numerical results show that
the oscillatory dynamics of each of the seven coherences
in Table II are in fact dominated by the coherent compo-
nent and that the latter terms in Equation 15 contribute
mainly a decaying dynamics. It is this decay that al-
lows a change in ratio of coherences and the potential for
synchronisation to emerge.

Figure 4 reports the synchronisation of 〈X1(t)〉 and
〈X2(t)〉 in the first two picoseconds of evolution. Inspec-
tion of the fast oscillations in the positions reveal an al-
most π phase difference between 〈Xi(t)〉 at 0.15 ps and

exactly in phase oscillations after 1 ps. This observation
is captured quantitatively with C〈X1〉,〈X2〉(t) dipping to
-0.75 towards negative synchronisation at 0.15 ps and
then up to 1 for positive synchronisation at 1 ps. These
numerical results show that synchronisation indeed oc-
curs between the displacements of intramolecular modes
of exciton-vibration dimers during the energy transfer
process. To understand the underlying mechanism we
perform an analysis similar to the previous section.

Figure 5 displays the FT of 〈Xi(t)〉 at 0.15 ps and 1.50
ps. Synchronisation can be seen again in this figure as the
change in frequency distribution between the two time



7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (ps)

1.0

0.8

0.6

0.4

0.2

0.0

0.2
X i

X2
X1

0.5

0.0

0.5

1.0

C
x 1

x 2

C x1 x2

FIG. 4. Evolution of the expectation value of intramolecular mode positions 〈Xi(t)〉 and their synchronisation C〈X1〉,〈X2〉(t)
in the open system evolution of an excited vibronic dimer as described in Section II. Initial state is Equation 10 and relevant
parameters are listed in Table I

points. At 0.15 ps the FT resembles that of the coher-
ent case in Figure 3b which indicates at this time coher-
ent dynamics are dominating. The presence of negatively
synchronised frequency 1102.6 cm−1 at a magnitude com-
parable to positively synchronised frequency 1111.0 cm−1

results in an interference and a non-stationary phase.
This is reflected in C〈X1〉,〈X2〉(t) in Figure 4 at early times
(0 - 1 ps) where the measure is continuously changing.
At 1.5 ps we see the dominant frequency become 1111.0
cm−1 which has equal amplitude in both 〈Xi(t)〉 signals
and corresponds to the value of 1 in C〈X1〉,〈X2〉(t).

0

Re
[F

T(
X i

)]

1102.6 1111.0 1119.2 1125.0
Frequency (cm 1)

0Re
[F

T(
X i

)] X2
X1

FIG. 5. Real part of Fourier Transform of 〈Xi〉 at 0.15 ps
[TOP] and 1.50 ps [BOTTOM] during open system evolution.

Although it is useful for understanding the dynamics
of synchronisation, this FT picture does not allow us
to understand why the frequency composition of 〈Xi(t)〉
changes over time. To do so we must consider the un-
derlying exciton-vibration coherence dynamics which we
present in Figure 6. Initially we observe that the dom-

inant frequency in the oscillation of each coherence is
indeed the coherent part Ωjk as can be evidenced by
comparison to Figure 3c. Figure 6a presents the first
0.30 ps of evolution of coherences where the two signals
are measured as being towards negatively synchronised.
Figure 6b presents the same coherences at 1.35 ps where
they are measured as positively synchronised. We can
immediately see how a change in the amplitude of the
coherences has occurred in the latter case and the two
signals appear much more similar. The dominant con-
tributions come from the three positively synchronised
coherences |ψ0〉〈ψ2|, |ψ1〉〈ψ5| and |ψ3〉〈ψ7| (solid lines).
These coherences constructively interfere to dominate the
oscillations seen in 〈Xi(t)〉 and therefore a value of 1 in
C〈X1〉,〈X2〉(t). It is this change in the ratio of coherences
over time that determines the emergence of synchronisa-
tion.

In previous studies [28] the mechanism for synchro-
nisation has been related to a difference in the decay
rates of eigenmodes of the Liouvillian superoperator, L.
The reasoning is that synchronisation occurs when one
eigenmode of L, that is equally coupled to the operators
of interest such that their evolutions are synchronised,
significantly outlives the other eigenmodes, transiently
dominates the dynamics, and holds the operators in a
synchronised state. Recently this explanation has been
consolidated analytically with an exact treatment of a
single dissipating qubit coupled to a probe qubit [5]. In
the original case these normal modes are found by diago-
nalising L and finding the conjugate pair of eigenvectors
that have eigenvalues with real parts closest to zero and
which couple significantly to the desired operator. Apply-
ing this process here results in an eigenmode of the Liou-
villian that consists almost entirely of exciton-vibration
coherence |ψ0〉〈ψ2|. This analysis corroborates with our
results which we present by plotting the absolute value of
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FIG. 6. Evolution of Real part of exciton-vibration coherences in the open system scaled by their coupling to 〈X1(t)〉 [TOP]
and 〈X2(t)〉 [BOTTOM] at times (a) 0 - 0.30 ps (b) 1.35 - 1.65 ps.

each coherence in Figure 7. We find coherence |ψ0〉〈ψ2|
is indeed longest lived.

The Liouvillian eigenmode analysis provides a straight-
forward prediction of the emergence of synchronisation at
long times, but it does not facilitate an understanding of
the early transient synchronisation dynamics. Neither
does it provide understanding of why certain eigenmodes
survive longer than others. The tracking of coherences
we present in this paper however is capable of giving us
insight into these early transients. In addition it allows
us to give a qualitative explanation of why certain coher-
ences survive longer in the presence of dissipation and
dephasing.

We expect pure dephasing to result in exponential de-
cays in excitonic coherences and thermal dissipation to
cause exponential decays in the population of modes [40].
In the final two rows of Table II we consider the matrix
elements of an operator relating to excitonic coherences
only σx = |E1〉〈E2|+ |E2〉〈E1|, and the combined vibra-
tional ground-state projector operator |01〉〈01|⊗ |02〉〈02|.
Exciton-vibration coherences that result in a large matrix
element for σx will be more affected by the fast electronic
dephasing. Similarly coherences that result in largest
values for the projector of the ground vibrational states
would last the longest due to thermal dissipation oper-
ating on a longer timescale and preferentially populating
such ground states.

Out of the set of coherences considered in Table II
the one that has the lowest exciton coherence compo-
nent and the largest ground-state vibrational component
is |ψ0〉〈ψ2| which we find indeed to be the longest lived.
This explanation can be consolidated with a numerical
test in which we set the thermal dissipation rate faster
than the dephasing rate (results not shown). In this
case we would expect the eigenstate coherence contain-

0 1 2 3 4
Time (ps)

0.00

0.02

0.04

0.06

0.08

0.10
|X

i,j
k| 

||
jk
(t)

||
| 1 3|
| 0 3|
| 3 8|
| 1 4|
| 3 7|
| 1 5|
| 0 2|

FIG. 7. Complex magnitude of exciton-vibration coherences
scaled by the absolute value of their corresponding position
matrix element in the open quantum system evolution.

ing a larger excitonic coherence component would sur-
vive longest. Indeed we find that the coherence |ψ0〉〈ψ1|,
which has a much larger excitonic coherence element
〈ψ0|σx|ψ1〉 = −0.8572 would be the longest lived coher-
ence and would lead to long lived negative synchronisa-
tion.

In summary we have shown how the interplay be-
tween exciton-vibration dynamics and the different noise
sources considered lead to a rich synchronisation dynam-
ics for the local modes and shown how said dynamics
maps directly to the evolution of exciton-vibration co-
herences.
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C. The Role of Coherent Energy Transfer in
Synchronisation of Intramolecular Modes

Thus far we have described the coherent and dissipa-
tive contributions to the dynamics of exciton-vibration
coherences and therefore to the dynamics of synchroni-
sation. Presently we turn our attention to the electronic
energy transfer dynamics of the light-harvesting unit con-
sidered, its coherent character and its relation to synchro-
nisation of local displacements.

One of the most important features of the prototype
system considered is that efficient ET is aided by a
resonance in energy between the exciton energy split-
ting and an energy quanta of the local intramolecular
modes [18, 22, 25]. This resonance results in a range
of eigenstates |ψj〉 that are close in energy yet in the
quasi-local basis of |Ed, n1, n2〉 have significantly differ-
ent weights. When coherently evolving from the initial
state considered (with the excitonic system being ini-
tially in the highest-energy exciton state) joint exciton-
vibrational transfer pathways are open and population
can be coherently transferred to eigenstates involving the
lowest lying exciton.

We can intuitively understand how ET is essential for
the synchronisation of local displacements in the proto-
type dimers studied by recalling both the quasi-localised
nature of the excitons for the parameter regime consid-
ered and the local nature of the electronic-vibration in-
teractions. Trivially, ET between excitons must occur for
the intramolecular modes to become effectively coupled,
exchange energy and synchronise. However the precise
relations between the degree of coherent electronic ET
and synchronisation is less obvious. In our synchronisa-
tion analysis so far we observe that the ET period (0 -
0.5 ps) is concomitant with the negatively synchronised
transient of Figure 4. It appears that during this en-
ergy transfer period the displacements of the modes tend
towards being negatively synchronised. This suggests a
signature of coherent ET could be found in a measure of
synchronisation of local mode displacements, which we
discuss further in Section IV.

To investigate the relationship between coherent ET
and synchronisation quantitatively, we compare scenar-
ios in which the resonance condition between exciton en-
ergy splitting and mode energy quanta is kept fixed but
the degree of delocalisation of excitons is increased such
that coherent ET transfer is enhanced. We also analyse
the case in which the frequency of the modes are detuned
from the exciton energy splitting to illustrate the funda-
mental role of the energy matching condition both for
ET and for synchronisation.

The energy difference between exciton splitting and
vibrational energies, i.e. ∆ = ∆E − ω; the coupling
strength between local vibrational and electronic degrees
of freedom g; and the exciton size or delocalisation θ
which depends on the ratio η = 2|V |/∆E all influence
the coherent character of ET. An approximate indica-
tor of the degree of coherent ET is derived[43] from the

transition probability between the two exciton-vibration
states dominating electronic ET in our prototype dimer.
The indicator is an estimate of the maximum amplitude
A for the population oscillations and is given by:

A =
1

1 + ( ∆
2g sin(2θ) )2

. (16)

The parameter regime used throughout this paper (see
Section II) corresponds to A = 0.76. For the off-resonant
modes we choose a frequency of 1500 cm−1 (a mode at
this frequency is also present in PE545 [36]), resulting in
A = 0.04. For increased exciton delocalisation we choose
η = 0.5 but keep the energy resonance condition ∆ fixed,
resulting in A = 0.95. In Figure 8 we present the lowest
exciton population dynamics (operator |E1〉〈E1|), which
provides numerical evidence of the change in ET, along-
side the dynamics of synchronisation and the selected
exciton-vibration coherences (see Figure 7 from the pre-
vious analysis) in each scenario. Together these plots
allow us to compare the three different ET regimes and
consider their effects on synchronisation.

Firstly we note the clear change in magnitude of coher-
ent ET from high in Figure 8a, to low in Figure 8e and
that the time taken for synchronisation to occur appears
to follow the same pattern. Positive synchronisation is
achieved in 0.5 ps when A = 0.95, 1 ps when A = 0.76
and is not reached in the 2 ps window presented when
A = 0.04. This correlation is also reflected in the exciton-
vibration coherence evolutions in Figures 8b, 8d and 8f
(note we have removed two of the seven exciton-vibration
coherences for clarity). When A = 0.95 (Figure 8b)
negatively synchronised coherences (plotted with shape
markers) decay faster than when A = 0.76 (Figure 8d).
This results in the positively synchronised coherences
(solid lines) dominating from an earlier time and hence
the earlier emergence of positive synchronisation. When
A = 0.04 (Figure 8f) we observe that positively and nega-
tively synchronised coherences have almost identical am-
plitude throughout the evolution and therefore neither
can dominate. Small differences are amplified and inter-
ferences prevent synchronisation in the time scale consid-
ered. Positive synchronisation only emerges at around 10
ps (not shown) when positive synchronised coherences fi-
nally outlive the negative synchronised ones however by
this time the oscillation amplitudes have nearly decayed
to zero.

Additionally we identify that the eigenstate coherence
|ψ1〉〈ψ3| can be used as an indicator of the magnitude of
coherent ET. In the three regimes considered its ampli-
tude appears correlated with the amplitude of coherent
ET. This can be understood by considering the compo-
sition of the eigenstates involved and their energy split-
ting. Firstly, the eigenstates |ψ1〉 and |ψ3〉 have an energy
splitting of only 81 cm−1 � ω which leads to resonance
energy transfer between them. Secondly, in the basis of
|Ed, n1, n2〉, these eigenstates have the following approx-
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FIG. 8. Comparison of dynamics of ET with synchronisation of 〈Xi(t)〉 and the magnitude of exciton-vibration coherences for
three different parameter regimes: (c)(d) for central PEB dimer in PE545 (parameters in Table I) corresponding to A=0.76;
(a)(b) modified parameters η = 0.5 corresponding to A=0.95; (e)(f) modified parameters ω = 1500 cm−1 corresponding to
A=0.04.



11

imate compositions:

|ψ1〉 ≈ 0.3|E1〉 (|01〉 − |10〉) + 0.9|E200〉 − 0.2|E201〉,
|ψ3〉 ≈ 0.6|E1〉 (|01〉 − |10〉)− 0.4|E200〉+ 0.1|E201〉.

(17)

which shows that a transition between them would trans-
fer exciton population. Together this suggests the coher-
ence |ψ1〉〈ψ3| is part of the ET mechanism and explains
why its amplitude scales in accordance with the changes
in ET.

Our analyses clearly highlight a correlation between
the amplitude of coherent excitation transport and the
time it takes for mode displacements to synchronise. This
is significant as it suggests that a degree of control of
quantum synchronisation can be achieved by adjusting
only coherent exciton-vibration interactions and specifi-
cally without changing the environment-induced dissipa-
tion or dephasing.

The relationship we observe can be understood as fol-
lows: parameter changes that increase ET effectively in-
crease the coupling between the subsystems and allow
a faster exchange of energy; the electronic subsystem
‘overshoots’ its equilibrium position and ET oscillations
occur; the damping of pure exciton coherences acceler-
ates and in turn the decay of negatively synchronised
exciton-vibration coherences accelerates; the system be-
comes dominated by positive synchronised coherences in
a shorter time scale and exhibits the shorter synchroni-
sation times we observe.

IV. DISCUSSIONS AND CONCLUSION

Before concluding we discuss some of the implications
and limitations of our results.

The results of Sections III B and III C, indicate neg-
ative synchronisation is concomitant with coherent en-
ergy transport. Moreover, our analysis of the exciton-
vibration coherences that are negatively synchronised
showed that they all have a large component of excitonic
coherence. This raises the question: can we conclude that
the negative synchronisation of local mode displacements
is a signature of the survival of excitonic coherence? A
transient shift towards negative synchronisation persists
in all different initial preparations of exciton state (ex-
cept for an initial state equal to the the steady state),
and the shift becomes less pronounced as coherent exci-
ton population transport inhibited. Additionally, as re-
ported in Section III B, if dephasing rates are much slower
than thermal relaxation i.e. excitonic coherence is longer
lived, we find that the length of this negative synchro-
nisation period extends to the steady state. Altogether
this suggests that, for the system considered, a negatively
synchronised transient in the positions of intramolecular
modes can indeed be a signature of excitonic coherence
and coherent energy transfer.

The parameter regime studied throughout this paper
is for the special case of ω1 = ω2. This restriction al-
lowed us to focus on the complex relationship between
synchronisation, coherence and dissipation. However it
also raises some interesting points.

Firstly, a classical view of two coupled oscillators with
ω1 = ω2 might lead one to expect synchronisation to
trivially always occur. We have shown that in the quan-
tum setting, due to the exciton-vibration nature of the
complex, the frequencies at which the local mode posi-
tions may oscillate are not equal and, in fact, change over
time. This effect cannot be thought of classically. On the
other hand, the relationship between ET and synchroni-
sation can be thought of as analogous to how increasing
the coupling strength between two classical oscillators
allows them to synchronise faster. Our intramolecular
modes are coupled to local electronic states that exchange
energy through electronic coupling. Increasing ET in-
volves increasing the electronic coupling which leads to a
stronger effective coupling between the modes.

Secondly, as mentioned in Section III B, the exciton-
vibration coherences we study have precisely equal or
opposite values in Xi,kj . We can explain this result by
examining our Hamiltonian for differences between X1

and X2. Whilst ω1 = ω2, swapping Xi would result in
no changes to Hvib and a sign change on excitonic coher-
ences in Hexc−vib i.e. 〈E2|Θ1|E1〉 = −〈E2|Θ2|E1〉. This
-1 scaling is the source of the differences between X1,kj

and X2,kj seen in this investigation. If ω1 6= ω2, Hvib is
no longer symmetric upon exchange of Xi. We expect
this detuning would result in a wide range of Xi,kj and
therefore contributions of different phases to the dynam-
ics.

To conclude, we have predicted the transient sponta-
neous synchronisation of the displacements of intramolec-
ular modes on neighbouring molecules in a bio-inspired
vibronic dimer. Until now, synchronisation had not been
investigated in a hybrid quantum system where excitonic
and vibrational coherence overlap in such a way. We have
presented an understanding of the mechanism for syn-
chronisation as the survival of specific exciton-vibration
coherences, and detailed how coherences are selected for
by dissipation. This analysis may provide a perspective
from which we can understand synchronisation in other
dissipating hybrid quantum systems such as larger multi-
chromophore systems. We showed that both dissipative
and coherent dynamics play an important role in the for-
mation of synchronisation in these systems. Coherent
ET is positively correlated with the time scale in which
synchronisation is achieved. Dissipation is required for
the decay of exciton-vibration coherences to allow one
to dominate and can control the form of synchronisation
that occurs. The parameter regime that most closely
resembles a real photosynthetic dimer appears to be one
where there is a balance between coherent and dissipative
dynamics in which synchronisation can emerge before the
steady state is reached. Our work highlights a novel pos-
sible role for exciton-vibrational coherence in biomolecu-
lar complexes, namely supporting the synchronisation of
out-of-equilibrium vibrational motions.
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