62 research outputs found

    Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases

    Get PDF
    Activation status of the phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer brain metastases (BCBMs) is largely unknown. We examined expression of phospho(p)-AKT, p-S6, and phosphatase and tensin homologue (PTEN) in BCBMs and their implications for overall survival (OS) and survival after BCBMs. Secondary analyses included PI3K pathway activation status and associations with time to distant recurrence (TTDR) and time to BCBMs. Similar analyses were also conducted among the subset of patients with triple-negative BCBMs. METHODS: p-AKT, p-S6, and PTEN expression was assessed with immunohistochemistry in 52 BCBMs and 12 matched primary BCs. Subtypes were defined as hormone receptor (HR)+/HER2-, HER2+, and triple-negative (TNBC). Survival analyses were performed by using a Cox model, and survival curves were estimated with the Kaplan-Meier method. RESULTS: Expression of p-AKT and p-S6 and lack of PTEN (PTEN-) was observed in 75%, 69%, and 25% of BCBMs. Concordance between primary BCs and matched BCBMs was 67% for p-AKT, 58% for p-S6, and 83% for PTEN. PTEN- was more common in TNBC compared with HR+/HER2- and HER2+. Expression of p-AKT, p-S6, and PTEN- was not associated with OS or survival after BCBMs (all, P > 0.06). Interestingly, among all patients, PTEN- correlated with shorter time to distant and brain recurrence. Among patients with TNBC, PTEN- in BCBMs was associated with poorer overall survival. CONCLUSIONS: The PI3K pathway is active in most BCBMs regardless of subtype. Inhibition of this pathway represents a promising therapeutic strategy for patients with BCBMs, a group of patients with poor prognosis and limited systemic therapeutic options. Although expression of the PI3K pathway did not correlate with OS and survival after BCBM, PTEN- association with time to recurrence and OS (among patients with TNBC) is worthy of further study

    Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study

    Get PDF
    Introduction Some molecular subtypes of breast cancer have preferential sites of distant relapse. The protein expression pattern of the primary tumor may influence the first distant metastasis site. Methods We identified from the files of the Finnish Cancer Registry patients diagnosed with breast cancer in five geographical regions Finland in 1991-1992, reviewed the hospital case records, and collected primary tumor tissue. Out of the 2,032 cases identified, 234 developed distant metastases after a median follow-up time of 2.7 years and had the first metastatic site documented (a total of 321 sites). Primary tumor microarray (TMA) cores were analyzed for 17 proteins using immunohistochemistry and for erbB2 using chromogenic in situ hybridization, and their associations with the first metastasis site were examined. The cancers were classified into luminal A, luminal B, HER2+ enriched, basal-like or non-expressor subtypes. Results A total of 3,886 TMA cores were analyzed. Luminal A cancers had a propensity to give rise first to bone metastases, HER2-enriched cancers to liver and lung metastases, and basal type cancers to liver and brain metastases. Primary tumors that gave first rise to bone metastases expressed frequently estrogen receptor (ER) and SNAI1 (SNAIL) and rarely COX2 and HER2, tumors with first metastases in the liver expressed infrequently SNAI1, those with lung metastases expressed frequently the epidermal growth factor receptor (EGFR), cytokeratin-5 (CK5) and HER2, and infrequently progesterone receptor (PgR), tumors with early skin metastases expressed infrequently E-cadherin, and breast tumors with first metastases in the brain expressed nestin, prominin-1 and CK5 and infrequently ER and PgR. Conclusions Breast tumor biological subtypes have a tendency to give rise to first distant metastases at certain body sites. Several primary tumor proteins were associated with homing of breast cancer cells.BioMed Central Open acces
    corecore