1,020 research outputs found
One-by-one trap activation in silicon nanowire transistors
Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors
(MOSFETs) has been identified as the main source of noise at low frequency. It
often originates from an ensemble of a huge number of charges trapping and
detrapping. However, a deviation from the well-known model of 1/f noise is
observed for nanoscale MOSFETs and a new model is required. Here, we report the
observation of one-by-one trap activation controlled by the gate voltage in a
nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale
FETs. We demonstrate that the Coulomb repulsion between electronically charged
trap sites avoids the activation of several traps simultaneously. This effect
induces a noise reduction by more than one order of magnitude. It decreases
when increasing the electron density in the channel due to the electrical
screening of traps. These findings are technologically useful for any FETs with
a short and narrow channel.Comment: One file with paper and supplementary informatio
Towards universal influenza vaccines?
Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologies based on embryonated chicken eggs may be replaced by cell culture techniques. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Better understanding of the correlates of immune-mediated protection may lead to new vaccine targets besides the viral haemagglutinin, like the neuraminidase and M2 proteins. In addition, the role of cell-mediated immunity could be better exploited. New adjuvants have recently been shown to increase the breadth and the duration of influenza vaccine-induced protection. Other studies have shown that influenza vaccines based on different viral vector systems may also induce broad protection. It is to be expected that these developments may lead to more universal influenza vaccines that elicit broader and longer protection, and can be produced more efficiently
Phonon Universal Transmission Fluctuations and Localization in Semiconductor Superlattices with a Controlled Degree of Order
We study both analytically and numerically phonon transmission fluctuations
and localization in partially ordered superlattices with correlations among
neighboring layers. In order to generate a sequence of layers with a varying
degree of order we employ a model proposed by Hendricks and Teller as well as
partially ordered versions of deterministic aperiodic superlattices. By
changing a parameter measuring the correlation among adjacent layers, the
Hendricks- Teller superlattice exhibits a transition from periodic ordering,
with alterna- ting layers, to the phase separated opposite limit; including
many intermediate arrangements and the completely random case. In the partially
ordered versions of deterministic superlattices, there is short-range order
(among any conse- cutive layers) and long range disorder, as in the N-state
Markov chains. The average and fluctuations in the transmission, the
backscattering rate, and the localization length in these multilayered systems
are calculated based on the superlattice structure factors we derive
analytically. The standard deviation of the transmission versus the average
transmission lies on a {\it universal\/} curve irrespective of the specific
type of disorder of the SL. We illustrate these general results by applying
them to several GaAs-AlAs superlattices for the proposed experimental
observation of phonon universal transmission fluctuations.Comment: 16-pages, Revte
Impact of van der Waals forces on the classical shuttle instability
The effects of including the van der Waals interaction in the modelling of
the single electron shuttle have been investigated numerically. It is
demonstrated that the relative strength of the vdW-forces and the elastic
restoring forces determine the characteristics of the shuttle instability. In
the case of weak elastic forces and low voltages the grain is trapped close to
one lead, and this trapping can be overcome by Coulomb forces by applying a
bias voltage larger than a threshold voltage . This allows for
grain motion leading to an increase in current by several orders of magnitude
above the transition voltage . Associated with the process is also
hysteresis in the I-V characteristics.Comment: minor revisions, updated references, Article published in Phys. Rev.
B 69, 035309 (2004
Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains
The harmonic Fibonacci chain, which is one of a quasiperiodic chain
constructed with a recursion relation, has a singular continuous
frequency-spectrum and critical eigenstates. The validity of the Fourier law is
examined for the harmonic Fibonacci chain with stochastic heat baths at both
ends by investigating the system size N dependence of the heat current J and
the local temperature distribution. It is shown that J asymptotically behaves
as (ln N)^{-1} and the local temperature strongly oscillates along the chain.
These results indicate that the Fourier law does not hold on the harmonic
Fibonacci chain. Furthermore the local temperature exhibits two different
distribution according to the generation of the Fibonacci chain, i.e., the
local temperature distribution does not have a definite form in the
thermodynamic limit. The relations between N-dependence of J and the
frequency-spectrum, and between the local temperature and critical eigenstates
are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma
Editorial : Symbiosis in a Changing Environment
& nbsp;& nbsp;Non peer reviewe
Quantum Phonon Optics: Coherent and Squeezed Atomic Displacements
In this paper we investigate coherent and squeezed quantum states of phonons.
The latter allow the possibility of modulating the quantum fluctuations of
atomic displacements below the zero-point quantum noise level of coherent
states. The expectation values and quantum fluctuations of both the atomic
displacement and the lattice amplitude operators are calculated in these
states---in some cases analytically. We also study the possibility of squeezing
quantum noise in the atomic displacement using a polariton-based approach.Comment: 6 pages, RevTe
Phonon Transmission Rate, Fluctuations, and Localization in Random Semiconductor Superlattices: Green's Function Approach
We analytically study phonon transmission and localization in random
superlattices by using a Green's function approach. We derive expressions for
the average transmission rate and localization length, or Lyapunov exponent, in
terms of the superlattice structure factor. This is done by considering the
backscattering of phonons, due to the complex mass density fluctuations, which
incorporates all of the forward scattering processes. These analytical results
are applied to two types of random superlattices and compared with numerical
simulations based on the transfer matrix method. Our analytical results show
excellent agreement with the numerical data. A universal relation for the
transmission fluctuations versus the average transmission is derived
explicitly, and independently confirmed by numerical simulations. The transient
of the distribution of transmission to the log-normal distribution for the
localized phonons is also studied.Comment: 36 pages, Late
Water Electrolysis and Energy Harvesting with 0D Ion-Sensitive Field-Effect Transistors
The relationship of the gas bubble size to the size distribution critically
influences the effectiveness of electrochemical processes. Several optical and
acoustical techniques have been used to characterize the size and emission
frequency of bubbles. Here, we used zero-dimensional (0D) ion-sensitive
field-effect transistors (ISFETs) buried under a microbath to detect the
emission of individual bubbles electrically and to generate statistics on the
bubble emission time. The bubble size was evaluated via a simple model of the
electrolytic current. We suggest that energy lost during water electrolysis
could be used to generate electric pulses at an optimal efficiency with an
array of 0D ISFETs.Comment: One pdf file including paper and supporting informations. Nano
Letters, published on line (2013
- …