1,993 research outputs found
Characterization of a planar microcoil for implantable microsystems
This paper discusses the modelling, design and characterization of planar microcoils to be used in telemetry systems that supply energy to miniaturized implants. Parasitic electrical effects that may become important at a.c. frequencies of several megahertz are evaluated. The fabrication process and electrical characterization of planar receiver microcoils will be described, and it will be shown that a power of a few milliwatts is feasible.\u
Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems
Computer modeling of multicellular systems has been a valuable tool for
interpreting and guiding in vitro experiments relevant to embryonic
morphogenesis, tumor growth, angiogenesis and, lately, structure formation
following the printing of cell aggregates as bioink particles. Computer
simulations based on Metropolis Monte Carlo (MMC) algorithms were successful in
explaining and predicting the resulting stationary structures (corresponding to
the lowest adhesion energy state). Here we present two alternatives to the MMC
approach for modeling cellular motion and self-assembly: (1) a kinetic Monte
Carlo (KMC), and (2) a cellular particle dynamics (CPD) method. Unlike MMC,
both KMC and CPD methods are capable of simulating the dynamics of the cellular
system in real time. In the KMC approach a transition rate is associated with
possible rearrangements of the cellular system, and the corresponding time
evolution is expressed in terms of these rates. In the CPD approach cells are
modeled as interacting cellular particles (CPs) and the time evolution of the
multicellular system is determined by integrating the equations of motion of
all CPs. The KMC and CPD methods are tested and compared by simulating two
experimentally well known phenomena: (1) cell-sorting within an aggregate
formed by two types of cells with different adhesivities, and (2) fusion of two
spherical aggregates of living cells.Comment: 11 pages, 7 figures; submitted to Phys Rev
Interpreting random forest models using a feature contribution method
Model interpretation is one of the key aspects of the model evaluation process. The explanation of the relationship between model variables and outputs is easy for statistical models, such as linear regressions, thanks to the availability of model parameters and their statistical significance. For “black box” models, such as random forest, this information is hidden inside the model structure. This work presents an approach for computing feature contributions for random forest classification models. It allows for the determination of the influence of each variable on the model prediction for an individual instance. Interpretation of feature contributions for two UCI benchmark datasets shows the potential of the proposed methodology. The robustness of results is demonstrated through an extensive analysis of feature contributions calculated for a large number of generated random forest models
Planar Dirac Electron in Coulomb and Magnetic Fields
The Dirac equation for an electron in two spatial dimensions in the Coulomb
and homogeneous magnetic fields is discussed. For weak magnetic fields, the
approximate energy values are obtained by semiclassical method. In the case
with strong magnetic fields, we present the exact recursion relations that
determine the coefficients of the series expansion of wave functions, the
possible energies and the magnetic fields. It is found that analytic solutions
are possible for a denumerably infinite set of magnetic field strengths. This
system thus furnishes an example of the so-called quasi-exactly solvable
models. A distinctive feature in the Dirac case is that, depending on the
strength of the Coulomb field, not all total angular momentum quantum number
allow exact solutions with wavefunctions in reasonable polynomial forms.
Solutions in the nonrelativistic limit with both attractive and repulsive
Coulomb fields are briefly discussed by means of the method of factorization.Comment: 18 pages, RevTex, no figure
The importance of early arthritis in patients with rheumatoid arthritis
Rheumatoid arthritis (RA) is a systemic inflammatory disorder that manifests predominantly in the synovial joint, where it causes a chronic inflammatory process, leading to early osteoarticular destructions. These destructions are progressive and irreversible, generating a significant functional deficiency. During the last years, the diagnostic approach of RA has focused on early arthritis. Early arthritis can develop into established RA or another established arthropathy, like systemic lupus erythematosus or psoriatic arthritis. It can have a spontaneous resolution or may remain undifferentiated for indefinite periods of time.
The management of early arthritis has changed considerably in the past few years, under the influence of new concepts of diagnosis and new effective therapies. The treatment goal of early arthritis should now be the clinical remission and prevention of joint destruction. Methotrexate is the first line of therapy, used to treat early arthralgia and to reverse or limit impending exacerbation to RA. Biological treatment is used as a second line therapy in patients with severe disease who do not respond or have a contraindication to disease-modifying antirheumatic drugs (DMARDs). Patients with early arthritis should usually be identified and directed to rheumatologists to confirm the presence of arthritis, and to establish the correct diagnosis plus to initiate the proper treatment strategies
Cation-swapped homogeneous nanoparticles in perovskite oxides for high power density
Exsolution has been intensively studied in the fields of energy conversion and storage as a method for the preparation of catalytically active and durable metal nanoparticles. Under typical conditions, however, only a limited number of nanoparticles can be exsolved from the host oxides. Herein, we report the preparation of catalytic nanoparticles by selective exsolution through topotactic ion exchange, where deposited Fe guest cations can be exchanged with Co host cations in PrBaMn1.7Co0.3O5+delta. Interestingly, this phenomenon spontaneously yields the host PrBaMn1.7Fe0.3O5+delta, liberating all the Co cations from the host owing to the favorable incorporation energy of Fe into the lattice of the parent host (Delta E-incorporation = -0.41 eV) and the cation exchange energy (Delta E-exchange = -0.34 eV). Remarkably, the increase in the number of exsolved nanoparticles leads to their improved catalytic activity as a solid oxide fuel cell electrode and in the dry reforming of methane
Signal Balance as a Pluripotency Determinant: In vitro modeling of in vivo pluripotency states with WNT, FGF and BMP
This thesis enriches the body of knowledge around pluripotency by describing a novel pluripotent state. It deepens our understanding of cell biology, the processes establishing pluripotency and provides new insights into improving the process of artificial generation of pluripotent cells
Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs
Context: Crataegus monogyna L. (Rosaceae) (CM), Equisetum telmateia L. (Equisataceae) (ET), Geranium purpureum Vil. (Geraniaceae) (GP), Mentha suaveolens Ehrh. (Lamiaceae) (MS), and Lavandula stoechas L. spp. luisieri (Lamiaceae) (LS) are all medicinal. Objective: To evaluate the antioxidant, antiproliferative and antimicrobial activities of plant extracts and quantify individual phenolics and zinc. Material and methods: Aerial part extracts were prepared with water (W), ethanol (E) and an 80% mixture (80EW). Antioxidant activity was measured with TAA, FRAP and RP methods. Phenolics were quantified with a HPLC. Zinc was quantified using voltammetry. Antibacterial activity (after 48 h) was tested using Enterococcus faecalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes. Antiproliferative activity (after 24 h) was tested using HEP G2 cells and fibroblasts. Results: Solvents influenced results; the best were E and 80EW. GP had the highest antioxidant activity (TAA and FRAP of 536.90mg AAE/g dw and 783.48mg TE/g dw, respectively). CM had the highest zinc concentration (37.21 mg/kg) and phenolic variety, with neochlorogenic acid as the most abundant (92.91 mg/100 g dw). LS was rich in rosmarinic acid (301.71 mg/100 g dw). GP and LS inhibited the most microorganisms: B. cereus, E. coli and S. aureus. GP also inhibited E. faecalis. CM had the lowest MIC: 5830 mu g/mL. The antibacterial activity is explained by the phenolics present. LS and CM showed the most significant anti-proliferative activity, which is explained by their zinc content. Conclusion: The most promising plants for further studies are CM, LS and GP.FCT, Fundacao para a Ciencia e a Tecnologia of Portugal [SFRH/BSA/139/2014
- …
