4,687 research outputs found

    Giant electrocaloric effect in thin film Pb Zr_0.95 Ti_0.05 O_3

    Full text link
    An applied electric field can reversibly change the temperature of an electrocaloric material under adiabatic conditions, and the effect is strongest near phase transitions. This phenomenon has been largely ignored because only small effects (0.003 K V^-1) have been seen in bulk samples such as Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)0.98O3 and there is no consensus on macroscopic models. Here we demonstrate a giant electrocaloric effect (0.48 K V^-1) in 300 nm sol-gel PbZr0.95Ti0.05O3 films near the ferroelectric Curie temperature of 222oC. We also discuss a solid state device concept for electrical refrigeration that has the capacity to outperform Peltier or magnetocaloric coolers. Our results resolve the controversy surrounding macroscopic models of the electrocaloric effect and may inspire ab initio calculations of electrocaloric parameters and thus a targeted search for new materials.Comment: 5 pages, 4 figure

    Light scattering from a magnetically tunable dense random medium with weak dissipation : ferrofluid

    Full text link
    We present a semi-phenomenological treatment of light transmission through and its reflection from a ferrofluid, which we regard as a magnetically tunable system of dense random dielectric scatterers with weak dissipation. Partial spatial ordering is introduced by the application of a transverse magnetic field that superimposes a periodic modulation on the dielectric randomess. This introduces Bragg scattering which effectively enhances the scattering due to disorder alone, and thus reduces the elastic mean free path towards Anderson localization. Our theoretical treatment, based on invariant imbedding, gives a simultaneous decrease of transmission and reflection without change of incident linear polarisation as the spatial order is tuned magnetically to the Bragg condition, namely the light wave vector being equal to half the Bragg vector (Q). Our experimental observations are in qualitative agreement with these results. We have also given expressions for the transit (sojourn) time of light and for the light energy stored in the random medium under steady illumination. The ferrofluid thus provides an interesting physical realization of effectively a "Lossy Anderson-Bragg" (LAB) cavity with which to study the effect of the interplay of spatial disorder, partial order and weak dissipation on light transport. Given the current interest in propagation, optical limiting and storage of light in ferrofluids, the present work seems topical

    Activation Energies and Times of Relaxation for Binary Mixtures in Dilute Solution

    Get PDF

    Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers

    Full text link
    Polarized Neutron Reflectometry and magnetometry measurements have been used to obtain a comprehensive picture of the magnetic structure of a series of La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to FM inclusions within the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the FM moment occurs at the matching between layer thickness and cluster size, where the FM clusters would find the optimal strain conditions to be accommodated within the "non-FM" material. These results have important implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR

    Unsupervised domain adaptation under label space mismatch for speech classification

    Get PDF
    Unsupervised domain adaptation using adversarial learning has shown promise in adapting speech models from a labeled source domain to an unlabeled target domain. However, prior works make a strong assumption that the label spaces of source and target domains are identical, which can be easily violated in real-world conditions. We present AMLS, an end-to-end architecture that performs Adaptation under Mismatched Label Spaces using two weighting schemes to separate shared and private classes in each domain. An evaluation on three speech adaptation tasks, namely gender, microphone, and emotion adaptation, shows that AMLS provides significant accuracy gains over baselines used in speech and vision adaptation tasks. Our contribution paves the way for applying UDA to speech models in unconstrained settings with no assumptions on the source and target label spaces

    A nano-biosensor for DNA sequence detection using absorption spectra of SWNT-DNA composite

    Get PDF
    biosensor based on Single Walled Carbon Nanotube (SWNT)-Poly (GT)n ssDNA hybrid has been developed for medical diagnostics. The absorption spectrum of this assay is determined with the help of a Shimadzu UV-VIS-NIR spectrophotometer. Two distinct bands each containing three peaks corresponding to first and second van Hove singularities in the density of states of the nanotubes were observed in the absorption spectrum. When a single-stranded DNA (ssDNA) having a sequence complementary to probic DNA is added to the ssDNA-SWNT conjugates, hybridization takes place, which causes the red shift of absorption spectrum of nanotubes. On the other hand, when the DNA is noncomplementary, no shift in the absorption spectrum occurs since hybridization between the DNA and probe does not take place. The red shifting of the spectrum is considered to be due to change in the dielectric environment around nanotubes. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2212

    Charmonium Spectrum from Quenched QCD with Overlap Fermions

    Get PDF
    We present preliminary results using overlap fermions for the charmonium spectrum, in particular for hyperfine splitting. Simulations are performed on 163×7216^3 \times 72 lattices, with Wilson gauge action at β=6.3345\beta=6.3345. Depending on how the scale is set, we obtain 104(5) MeV (using 1Pˉ1Sˉ1\bar{P}-1\bar{S}) or 88(4) MeV (using r0r_0=0.5 fm) for the hyperfine splitting.Comment: 3 pages, 5 fiugres. Talk presented at Lattice 2004 (heavy

    The structure of intercalated water in superconducting Na0.35_{0.35}CoO2_{2}\cdot1.37D2_{2}O: Implications for the superconducting phase diagram

    Full text link
    We have used electron and neutron powder diffraction to elucidate the structural properties of superconducting \NaD. Our measurements show that our superconducting sample exhbits a number of supercells ranging from 1/3a{1/3}a^{*} to 1/15a{1/15}a^{*}, but the most predominant one, observed also in the neutron data, is a double hexagonal cell with dimensions \dhx. Rietveld analysis reveals that \deut\space is inserted between CoO2_{2} sheets as to form a layered network of NaO6_{6} triangular prisms. Our model removes the need to invoke a 5K superconducting point compound and suggests that a solid solution of Na is possible within a constant amount of water yy.Comment: 4 pages, 3 figure
    corecore