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Abstract

We present the first study of the charmonium spectrum using overlap fermions, on quenched configurations. Simulations are performed on
163 x 72 lattices, with Wilson gauge action at § = 6.3345. We demonstrate that we have discretization errors, as indicated by the dispersion
relation, at about 5%. We obtain 88(4) MeV for the 1S hyperfine splitting using the r( scale, and 121(6) MeV using the (1P — 15) scale. This
Letter should encourage the pursuit of using the same chiral fermions for both heavy and light quarks on the same lattice.

© 2006 Elsevier B.V. Open access under CC BY license.

1. Introduction

Over the last few years, numerical simulations of chiral
fermions have matured. The stage of testing has passed for
simulating valence chiral fermions, and physically relevant re-
sults have been reported in lattice simulations. All the studies
so far have concentrated on simulating light quarks. This is nat-
ural, as chiral symmetry plays an important role for small quark
masses. However, the use of overlap fermions to simulate heavy
as well as light quarks has been suggested in [1]. In this Let-
ter we want to make the point that overlap fermions can also
alleviate some problems related to simulating heavy quarks.
Here we present the first quantitative study of a heavy quark
system using overlap fermions. This opens the door for the sim-
ulation of experimentally more interesting heavy-light systems.
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Using the unequal mass Gell-Mann—Oakes—Renner relation as
the renormalization condition, the renormalization factor in the
heavy-light current can be determined non-perturbatively to a
high precision for overlap fermions [1]. This is important for
the computation of heavy-light decay constants.

Here we demonstrate the value of overlap fermions to
simulate heavy quarks, by studying hyperfine splitting in
the charmonium system. It is known that with staggered
quarks there is an ambiguity about Nambu—Goldstone (NG)
and non-NG modes for the 7., resulting in widely different
estimates of hyperfine splitting—51(6) MeV (non-NG) and
404(4) MeV (NG) [2]. NRQCD converges only slowly for
charm [3]. Including Ow®) terms changed the result from 96(2)
MeV to 55(5) MeV. Wilson fermions have O(a) errors. With
Sheikholeslami—Wohlert action, this error can be reduced to
O(a2) provided the coefficient of the correction term, csw, is
determined non-perturbatively. Hyperfine splitting is very sen-
sitive to the coefficient of the correction term, csw. There are
many studies [4—6] using Wilson type valence quarks, including
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Fig. 1. This is a plot of the speed of light, ¢, obtained from the dispersion re-
lation. It can be seen that the discretization errors are only a few percent till
ma ~0.5. This data comes from a 16> x 28 lattice at a spacing of 0.20 fm.

some with non-perturbative csw, and with continuum extrapo-
lation. The quenched clover estimate of hyperfine splitting has
stabilized around 72-77 MeV using the ry scale [5-7], and a
higher number of about 85 MeV using the (116 — 15‘) scale [5].
Results from a 2 + 1 dynamical simulation using tree-level csw,
still fall short of the experimental value of 117 MeV by about
20% [8].

Although costly to simulate, overlap fermions [9] have the
following desirable features:

Exact chiral symmetry on the lattice;

No additive quark mass renormalization;

No flavor symmetry breaking;

No O(a) error;

The O(m?a?) and O(AQCDma2) errors are also small,
from dispersion relation and renormalization constants.
Ref. [20] indicates that discretization errors are small for
overlap fermions.

The first two features are especially significant for light
quarks. Many exciting results at low quark masses have been
reported using overlap fermions [10]. The last three features are
more important for computing charmonium hyperfine splitting
using overlap fermions. The last feature, demonstrated in [1],
is an unexpected bonus in this regard. The key observation is
that the discretization errors are only about 5% all the way up
to ma ~ 0.5. In Fig. 1, we reproduce (from Ref. [1]) a plot
of the speed of light as a function of ma, obtained from the
pseudoscalar meson dispersion relation. This is obtained us-
ing a 16> x 28 lattice at a spacing of 0.20 fm. It is harder to
study the dispersion relation on the configurations we use for
this Letter, because on the small volume lattice box we use,
one unit of momentum corresponds to about 1.6 GeV. This is
a huge momentum, and as a result, the data is noisier. The ef-
fective energies for 0, 1 and 2 units of lattice momentum are
shown in Fig. 2. There is no clean plateau already for 2 units of
momentum. This results in a large error bar for the energy corre-
sponding to that momentum. Fig. 2 corresponds to ma = 0.35.
For smaller values of ma, the data is even more noisy, and it
is hard to obtain the speed of light reliably for smaller masses.
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Fig. 2. Effective energies for pseudoscalar mesons, for 0, 1 and 2 units of lattice
momentum, from the 163 x 72 lattice, at ma = 0.350. The effective energy for
2 units of momentum is very noisy, as explained in text.
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Fig. 3. Percent deviation of the speed of light from unity, as a function of ma.
This serves as an estimate of the relative discretization error. Near our charm
mass, the discretization errors are about 5%.

However, it is expected that the deviation of speed of light from
1 is larger for higher values of ma. Fig. 3 shows percent devia-
tion of the speed of light from unity, obtained from a fit to the
dispersion relation as a function of quark mass using the equa-
tion

(E(p)a)* =c*(pa)* + (E(0)a)’. (1)

This figure indicates that we have discretization errors at about
the 5-7% level near the charm mass, which is near ma ~ 0.35.

2. Simulation details

Our simulations are performed on 163 x 72 isotropic lattices.
We present results on 100 configurations. The Wilson gauge
action is used at 8 = 6.3345. We use a multi-mass inverter to
obtain propagators for 26 masses ranging from 0.020-0.85 in
lattice units. Only five of these masses in the range 0.25-0.50
are used for this study.

In this section, we elaborate on some technical details re-
garding overlap inversions required for this Letter. This section
can be skipped without loss of continuity. Numerical details of
our overlap simulations are given in Ref. [11]. The interested
reader may also refer to [12] for background on practical as-
pects of simulating overlap quarks.
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Fig. 4. Effect of inner loop precision on pseudoscalar propagators for heavy
quarks. We study the output of one spin and one color for a single configuration
for this illustration. The curves are slightly shifted horizontally for clarity.

Since overlap simulations are computationally expensive, it
is important to choose the required residuals carefully—blindly
requiring extremely precise inversions is not the optimal use of
computing resources. We use the standard 2-norm residual with
the source normalized to unity, i.e. |MX — b||/||b||. For over-
lap simulations, there are three relevant numbers: residual for
eigenvectors projected out to reduce the condition number of
the matrix to be inverted in the inner loop, the residual for in-
ner loop which computes the overlap operator, and the residual
for the outer loop which actually computes the quark propaga-
tors. For the lattices we use, we only need to project out about
15 eigenvectors, so we simply demand a very small residual,
10719 for this step. Unlike this step, however, the inner and
outer loop residuals demanded affect the computational cost
substantially. To determine what residual is good enough, we
repeat the quark propagator inversion for one spin, one color
and one configuration, and compare the “pseudoscalar” two-
point function for various quark masses. This is not a physi-
cal quantity since no trace over spin and color is performed,
and no configuration average is taken—we are simply study-
ing precision issues here. Comparing results for an inner loop
residual of 107 with those from an inner loop residual of
10~7, we find no change for small quark masses. However for
heavy quarks, the two-point function falls through many or-
ders of magnitude, and becomes very small at the center of
the lattice. To get this precisely, we find we need a small in-
ner loop residual—10~° is not sufficient. In Fig. 4 we show
the effect of inner loop residual on “pseudoscalar” propaga-
tors for heavy quarks. The curves are slightly shifted for clarity.
For ma = 0.450, even an inner loop residual of 10~ appears
to be good enough. However, for a larger ma = 0.630, this
residual is not good enough for ¢ > 30. For our production
runs, we choose an inner loop residual of 1078 and an outer
loop residual of 107>. We have tested an outer loop resid-
ual of 1077, two orders of magnitude better. This affects re-
sults at less than half percent level, so we deem an outer loop
residual of 107> to be sufficient. This residual of 107 is de-
manded for the lightest quark mass. Near the charm mass, the
residual obtained through the multi-mass inversion algorithm is
~2x 1077,
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Fig. 5. Effective masses for the pseudoscalar and vector correlators. The plateau
for the ratio of vector to pseudoscalar correlator is also shown. We use this ratio
to obtain our results for hyperfine splitting. These plots are for ma = 0.35.

Table 1
Charmonium states. For the P states, there are two possible interpolating fields,
denoted by I" and A. Experimental masses in GeV are shown

2+, JPC FieldI”'  Field A Mass (GeV)
Ne ) ot Yy - 2.979
Jv o 3s 1=~ Yy - 3.097
he Py = Yoy YysAY 3.526
X0 P ottt gy Vv A 3417
Xet Py MY Yy Y iAj—yiApy 3511

3. Analysis

In this Letter, we study five charmonium states shown in Ta-
ble 1—nc (' So), J /¥ CS1), he(" P1), x2C Po) and x!  P1). For
the P states, there are two possible operators—one (denoted by
I'") simply with appropriate y matrices and the other (denoted
by A) with a derivative as well as y matrices. We always use a
I' operator for the source, because using a A operator for the
source would require additional costly inversions. (It is for this
reason we do not study Xf. This state has no I" operator.) Us-
ing a A sink does not cost additional inversions. Thus for our P
state analysis, we have three possibilities—I", A or I"A. The
last one is our notation for a simultaneous fit to both I" and A
sink correlators.

The effective mass plots for the pseudoscalar and the vec-
tor states are shown in Fig. 5. The lower half of this figure
shows the effective hyperfine splitting from the ratio of vec-
tor to pseudoscalar correlators. These show a long plateau to
justify a single exponential fit. For the P states, the effective
masses are shown in Fig. 6. These have much larger error bars,
but they are still flat. The data gets noisy beyond ¢ = 30 and
precision problems cannot be excluded for channels other than
the pseudoscalar meson. We do not use time-slices beyond 30
in our fits.

We use two ways to set the scale—from the r( (using 0.5 fm)
and from the (1P — 15) splitting in the charmonium system.
The singlet P mass my,. is used for P,and Q@myy +my,) /4 for
the S mass. The (1P — 1S) scale analysis has three sub-cases,
depending on which of the I, A or I" A fits is used for /..

We present the rg results first. The lattice spacing for the
we use is 0.0561 fm [13]. The experimental m;,y is used to
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Fig. 6. Effective masses for the P states. The filled circles correspond to I”
operator and the open circles to A operator. The plots for different P states are
shifted along the y-axis. These effective masses are rather noisy, and we use
conservative error bars on our fitted results. Again, the plots are for ma = 0.35.
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Fig. 7. We fit the meson masses linearly in quark mass. Fits are shown for 7,
J /¥ and h, masses. All masses are in lattice units. s masses obtained using
I" and A operators are also shown, but the fit line is shown only for the I" A fit.

set m. (in lattice units). Interpolation for m/y as a function
of ma is shown in Fig. 7. A straight line fit is used. Inter-
polation for the hyperfine splitting is shown in Fig. 8. The fit
form used is (mj/y —my )a = A//ma + B/ma [15]. Know-
ing the charm mass and the scale, the hyperfine splitting in MeV
can be determined. Our result for the hyperfine splitting us-
ing the rq scale is 88(4) MeV. Recent quenched results from
Wilson-type fermions are 77(2)(6) MeV [6], 71.8(20) MeV [7]
and 72.6(0.9)(41.2)(—3.8) [5]. Since our result is for a single
lattice spacing, a direct comparison is not possible. However
a scaling study of overlap fermions [20] suggests that our er-
rors due to finite lattice spacing may be small. The spectrum
obtained using rp scale is shown in Fig. 9. The corresponding
results can be found in Table 2.

The (1P — 15) scale has the advantage that it is set within the
charmonium system, using masses of physical particles, so it is
expected to be more relevant for this system, and that it is model
independent. However, we have large errors on the P states.
Consequently, the scale set from (1P — 15) splitting itself will
have about 12% error, which is not included in the direct statis-
tical errors on various masses quoted below. Furthermore, we
caution the reader about possible systematic errors associated
with our small spatial extent of 0.8-0.9 fm, since our lattice is
close to the deconfinement transition [14]. The interpolation for
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Fig. 8. Hyperfine splitting as a function of quark mass, with interpolation shown
at mea.
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Fig. 9. Charmonium spectrum in physical units. Results from both the ry and
the (1P — 18) scales are shown. Note, for the latter scale, a linear combination
of h. and n, masses, along with the J /v mass, is used for input.

Table 2

Charmonium spectrum (GeV). Only direct statistical errors are included; the
statistical error on the lattice spacing a and systematic errors are not included
in this table

a(rg) a(lP —15) Expt.
r TA A

ne 3.017(4) 2.977(6) 2.967(7) 2.943(9) 2.980
J/¥ - - - - 3.097
J/¥—ne  0.088(4) 0.113(5) 0.121(6) 0.144(9) 0.117
he 3.44(7) 3.53(8) 3.49(9) 3.47(12) 3.526
X0 3.36(5) 3.41(7) 3.43(8) 3.39(10) 3.41
Xel 3.39(5) 3.46(7) 3.41(7) 3.45(10) 3.511
mea 0.431 0.343 0.321 0.273 -
me (GeV)  1.52 1.41 1.38 1.30 -
a (fm) 0.0561 0.0480 0.0460 0.0416 -

the I" A fit for my, is shown in Fig. 7, along with the interpo-
lations for m;,y and m, . We also show my_ obtained using
I' and A fits on the same plot. It is clear from this plot that
my, obtained from the three fits completely agree within error
bars. However, the slight difference in m, in the three cases
changes the scale, the charm mass and the hyperfine splitting
values considerably.

In the case of the spin splitting scale, the determination of
a and ma is entangled. The procedure we follow to disentan-
gle these is as follows. As shown in Fig. 7, all hadron masses
in lattice units are fitted to a straight line, mya = A, .ma + By,.
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Lattice spacing a and bare charm quark mass m.a are two un-
knowns; .,y and m(1P — 15) in physical units are the two
inputs. We solve for @ and m.a to obtain the values shown in
Table 2. The charm masses obtained are indicated in Fig. 7. We
would like to point out that while m.a in lattice units differs
considerably in the three sub-cases of (1P — 15) analyses, val-
ues for unrenormalized m . in GeV, tabulated in Table 2, cluster
much tighter.

The value we obtain for the hyperfine splitting in MeV is
extremely sensitive to the value used for the lattice spacing a.
For a slightly smaller a, the hyperfine splitting in lattice units
is considerably larger, since it falls rapidly with increasing a,
as seen in Fig. 8. Converting this to physical units further
increases the value. As a result, our results from the three
sub-cases of (1P — 15) analysis look quite different—113(5)
MeV using I', 121(6) MeV using I"A and 144(9) MeV us-
ing A. We would like to emphasize here that the errors quoted
are only direct statistical errors, and the errors on a are large
enough to bring these results into statistical agreement with
each other.

Fig. 9 shows the charmonium spectrum obtained from both
ro and (1P — 1§) analysis. Agreement with the experimental
values is much better for the (1P — 1S) scale. The agreement
with experimental numbers for all the particles studied is very
reasonable, indicating that the discretization errors must indeed
be small for overlap fermions. This is because the different
mass differences are supposed to measure differently defined
quark masses M», Mg, etc. [16]. The inequality of these quark
masses implies discretization errors. If all the mass differences
come out right, it would imply that M| ~ M, &~ Mg, and that
the discretization errors are small.

Finally, we summarize the results in Table 2. The errors
quoted are only statistical; the error on a is not included. All
masses are in GeV. Our value for the hyperfine splitting, using
the (1P — 18) scale and simultaneous fits to I" and A corre-
lators, actually agrees with experiment. This is fortuitous, be-
cause the contribution from dynamical fermions is not included,
and may be significant. However, there is no real contradiction
here, because we have substantial statistical and systematic er-
rors, as detailed below:

1. Direct statistical errors: these are quoted in Table 2.

2. Statistical error on a: in the (1P — 15) scale, this is primar-
ily due to the error on the A, mass, which is about 53 MeV.
This is about 12% of the physical (1P — 15) mass differ-
ence of 458 MeV. Note, this error is absent when the scale
is set using rg. On the other hand, r( is a model-dependent
scale, and it can have comparable errors. It has been pointed
out that 0.45 fm may be a better value to use for ¢ than 0.50
fm [17]. Using this value brings our rg results closer to the
(1P — 15) results.

3. Discretization errors: as explained in Section 1, these are
estimated at about 5%, from the dispersion relation. Results
from Ref. [20], in particular the Aoki plot, demonstrate that
discretization errors are small for overlap fermions. Since
the lattice spacing used in this study, 0.056 fm, is much
smaller than the lattice spacings used in Ref. [20], 0.17 fm

and 0.20 fm, we expect that we have very small discretiza-
tion errors.

4. Finite volume errors: our simulations are performed on a
box size of only 0.8-0.9 fm, hence it is not inconceivable
that the P states have some finite volume errors. However,
even this small box should be large enough for the S state
particles—J /¥ and 7.. A finite volume study using the rg
scale [6] finds a reduced hyperfine splitting on their small-
est volume, with a spatial extent of 0.75 fm.

5. Quenched approximation: dynamical fermions are ex-
pected to increase the value of hyperfine splitting. This
increase is about 20 MeV for the Wilson-type fermions
[8]. On the other hand, a study with NRQCD [18] does not
find a significant contribution from dynamical fermions.

6. Exclusion of OZI-suppressed diagrams: while a contribu-
tion of about 20 MeV cannot be ruled out, the contribution
due to these appears to be small in the charm quark region
[19]. Lattice calculations with smaller statistical and sys-
tematic errors are needed to settle this issue.

4. Summary

We have presented the first study of the charmonium spec-
trum using overlap fermions. We get a better agreement with the
experimental spectrum using the (1P — 1) scale rather than the
ro scale. Our value for the hyperfine splitting is 121(6) MeV and
88(4) MeV using the (1 P —18) and rp scales, respectively. We
observe that, for our lattice spacing of about 0.056 fm, over-
lap fermions increase the hyperfine splitting compared to the
continuum results from Wilson-type fermions, and it is now im-
portant to repeat the overlap study at a different lattice spacing
and a larger volume. We have indications, from dispersion re-
lation and scaling study [20], that our discretization errors for
this fine lattice spacing should be small. Unquenched overlap
results with more statistics and somewhat larger box size may
very well settle the charmonium hyperfine splitting issue. With
smaller discretization errors, the overlap fermion may be suit-
able for studying heavy-light quark systems on the same lattice.
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