52 research outputs found

    Spectral and polarization effects in deterministically nonperiodic multilayers containing optically anisotropic and gyrotropic materials

    Get PDF
    Influence of material anisotropy and gyrotropy on optical properties of fractal multilayer nanostructures is theoretically investigated. Gyrotropy is found to uniformly rotate the output polarization for bi-isotropic multilayers of arbitrary geometrical structure without any changes in transmission spectra. When introduced in a polarization splitter based on a birefringent fractal multilayer, isotropic gyrotropy is found to resonantly alter output polarizations without shifting of transmission peak frequencies. The design of frequency-selective absorptionless polarizers for polarization-sensitive integrated optics is outlined

    Monte Carlo Simulation of Flash Memory Elements’ Electrophysical Parameters

    Get PDF
    Operation of modern flash memory elements is based on electron transport processes in the channel of silicon MOSFETs with floating gate. The aim of this work was calculation of electron mobility and study of the influence of phonon and ionized impurity scattering mechanisms on the mobility, as well as calculation of parasitic tunneling current and channel current in the conductive channel of flash memory element. Numerical simulation during the design stage of flash memory element allows working out guidelines for optimization of device parameters defining its performance and reliability. In the work such electrophysical parameters, characterizing electron transport, as mobility and average electron energy, as well as tunneling current and current in the channel of the flash memory element are studied via the numerical simulation by means of Monte Carlo method. Influence of phonon and ionized impurity scattering processes on electron mobility in the channel has been analyzed. It is shown that in the vicinity of drain region a sufficient decrease of electron mobility defined by phonon scattering processes occurs and the growth of parasitic tunneling current is observed which have a negative influence on device characteristics. The developed simulation program may be used in computer-aided design of flash memory elements for the purpose of their structure optimization and improvement of their electrical characteristics

    ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ элСктрофизичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² элСмСнтов Ρ„Π»Π΅Ρˆ-памяти ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ

    Get PDF
    Operation of modern flash memory elements is based on electron transport processes in the channel of silicon MOSFETs with floating gate. The aim of this work was calculation of electron mobility and study of the influence of phonon and ionized impurity scattering mechanisms on the mobility, as well as calculation of parasitic tunneling current and channel current in the conductive channel of flash memory element. Numerical simulation during the design stage of flash memory element allows working out guidelines for optimization of device parameters defining its performance and reliability.In the work such electrophysical parameters, characterizing electron transport, as mobility and average electron energy, as well as tunneling current and current in the channel of the flash memory element are studied via the numerical simulation by means of Monte Carlo method. Influence of phonon and ionized impurity scattering processes on electron mobility in the channel has been analyzed. It is shown that in the vicinity of drain region a sufficient decrease of electron mobility defined by phonon scattering processes occurs and the growth of parasitic tunneling current is observed which have a negative influence on device characteristics.The developed simulation program may be used in computer-aided design of flash memory elements for the purpose of their structure optimization and improvement of their electrical characteristics.Π’ основС функционирования соврСмСнных элСмСнтов Ρ„Π»Π΅Ρˆ-памяти Π»Π΅ΠΆΠ°Ρ‚ процСссы пСрСноса элСктронов Π² проводящСм ΠΊΠ°Π½Π°Π»Π΅ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… МОП-транзисторов с ΠΏΠ»Π°Π²Π°ΡŽΡ‰ΠΈΠΌ Π·Π°Ρ‚Π²ΠΎΡ€ΠΎΠΌ. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ экспСримСнта ΠΏΠΎ расчёту подвиТности элСктронов ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ влияния Π½Π° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΠ½ΠΎΠ½Π½ΠΎΠ³ΠΎ рассСяния ΠΈ рассСяния Π½Π° ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ примСси, Π° Ρ‚Π°ΠΊΠΆΠ΅ расчёт ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ‚ΡƒΠ½Π½Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΈ Ρ‚ΠΎΠΊΠ° Π² проводящСм ΠΊΠ°Π½Π°Π»Π΅ элСмСнта Ρ„Π»Π΅Ρˆ-памяти. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ экспСримСнта Π½Π° этапС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ проСктирования элСмСнтов Ρ„Π»Π΅Ρˆ-памяти ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… быстродСйствиС ΠΈ Π½Π°Π΄Ρ‘ΠΆΠ½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹.ΠŸΡƒΡ‚Π΅ΠΌ числСнного модСлирования элСктронного пСрСноса Π² элСмСнтС Ρ„Π»Π΅Ρˆ-памяти ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ рассчитаны Ρ‚Π°ΠΊΠΈΠ΅ элСктрофизичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ пСрСнос, ΠΊΠ°ΠΊ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ, срСдняя энСргия элСктронов, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΡƒΠ½Π½Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΈ Ρ‚ΠΎΠΊΠ° Π² ΠΊΠ°Π½Π°Π»Π΅ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС процСссов рассСяния Π½Π° Ρ„ΠΎΠ½ΠΎΠ½Π°Ρ… ΠΈ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ примСси Π½Π° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ элСктронов Π² ΠΊΠ°Π½Π°Π»Π΅. Показано, Ρ‡Ρ‚ΠΎ Π²Π±Π»ΠΈΠ·ΠΈ области стока происходит сущСствСнноС сниТСниС подвиТности элСктронов, обусловлСнноС процСссами рассСяния Π½Π° Ρ„ΠΎΠ½ΠΎΠ½Π°Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ рост ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚Π½ΠΎΠ³ΠΎ Ρ‚ΡƒΠ½Π½Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΡŽ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… характСристик ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°.Разработанная ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° модСлирования ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ элСмСнтов Ρ„Π»Π΅Ρˆ-памяти с Ρ†Π΅Π»ΡŒΡŽ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΡ… конструкции ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ элСктричСских характСристик.

    Π§Π˜Π‘Π›Π•ΠΠΠžΠ• ΠœΠžΠ”Π•Π›Π˜Π ΠžΠ’ΠΠΠ˜Π• Π­Π›Π•ΠšΠ’Π Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜Πš Π“Π›Π£Π‘ΠžΠšΠžΠ‘Π£Π‘ΠœΠ˜ΠšΠ ΠžΠΠΠžΠ“Πž МОП-Π’Π ΠΠΠ—Π˜Π‘Π’ΠžΠ Π БО Π‘Π’Π Π£ΠšΠ’Π£Π ΠžΠ™ Β«ΠšΠ Π•ΠœΠΠ˜Π™ НА Π˜Π—ΠžΠ›Π―Π’ΠžΠ Π•Β»

    Get PDF
    Today submicron silicon-on-insulator (SOI) MOSFET structures are widely used in different electronic components and also can be used as sensing elements in some applications. The development of devices based on the structures with specified characteristics is impossible without computer simulation of their electric properties. The latter is not a trivial task since many complicated physical processes and effects must be taken into account. In current study ensemble Monte Carlo simulation of electron and hole transport in deep submicron n-channel SOI MOSFET with 100 nm channel length is performed. The aim of the study is investigation of the influence of interband impact ionization process on the device characteristics and determination of the transistor operation modes when impact ionization process starts to make an appreciable influence on the device functioning. Determination of the modes is very important for adequate and accurate modeling of different devices on the basis of SOI MOSFET structures. Main focus thereby is maid on the comparison of the use of two models of impact ionization process treatment with respect to their influence on the transistor current-voltage characteristics. The first model is based on the frequently used Keldysh approach and the other one utilizes the results obtained via numerical calculations of silicon band structure. It is shown that the use of Keldysh impact ionization model leads to much faster growth of the drain current and provides earlier avalanche breakdown for the SOI MOSFET. It is concluded that the choice between the two considered impact ionization models may be critical for simulation of the device electric characteristics. На сСгодняшний дСнь субмикронныС МОП-транзисторныС структуры ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ-Π½Π°-изоляторС (КНИ) ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… элСктронных устройствах, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² качСствС сСнсорных элСмСнтов. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ характСристиками Π½Π° основС этих структур Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° Π±Π΅Π· ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ модСлирования ΠΈΡ… элСктричСских свойств. Для глубокосубмикронных транзисторных структур это вСсьма трудная Π·Π°Π΄Π°Ρ‡Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ слоТныС физичСскиС процСссы ΠΈ эффСкты, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ мСсто Π² ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠΌ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π΅. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ многочастичным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ пСрСноса элСктронов ΠΈ Π΄Ρ‹Ρ€ΠΎΠΊ Π² глубокосубмикронном n-канальном КНИ МОП-транзисторС с Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΊΠ°Π½Π°Π»Π° 100 Π½ΠΌ. ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ явилось исслСдованиС влияния процСсса ΠΌΠ΅ΠΆΠ·ΠΎΠ½Π½ΠΎΠΉ ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° характСристики транзистора, Π° Ρ‚Π°ΠΊΠΆΠ΅ установлСниС Ρ‚Π°ΠΊΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… процСсс ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ сущСствСнноС влияниС Π½Π° Ρ€Π°Π±ΠΎΡ‚Ρƒ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ этих Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² являСтся ΠΊΡ€Π°ΠΉΠ½Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ для Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΈ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ модСлирования Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… устройств Π½Π° основС КНИ-МОП-транзисторных структур. ΠŸΡ€ΠΈ этом основноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΎ Π½Π° сравнСниС Π΄Π²ΡƒΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡƒΡ‡Π΅Ρ‚Π° процСсса ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎ стСпСни ΠΈΡ… влияния Π½Π° Π²ΠΎΠ»ΡŒΡ‚Π°ΠΌΠΏΠ΅Ρ€Π½Ρ‹Π΅ характСристики транзистора. ΠŸΠ΅Ρ€Π²Π°Ρ, аналитичСская модСль, основана Π½Π° ΡˆΠΈΡ€ΠΎΠΊΠΎ извСстном ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ ΠšΠ΅Π»Π΄Ρ‹ΡˆΠ°, Π° Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного расчСта Π·ΠΎΠ½Π½ΠΎΠΉ структуры крСмния. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠšΠ΅Π»Π΄Ρ‹ΡˆΠ° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π±ΠΎΠ»Π΅Π΅ быстрому росту Ρ‚ΠΎΠΊΠ° стока ΠΈ, ΠΊΠ°ΠΊ слСдствиС, ΠΊ ΡΠΊΠΎΡ€Π΅ΠΉΡˆΠ΅ΠΌΡƒ Π»Π°Π²ΠΈΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΠ±ΠΎΡŽ КНИ МОП-транзисторной структуры. Π‘Π΄Π΅Π»Π°Π½ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π±ΠΎΡ€ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя рассматриваСмыми модСлями ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ критичСским ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ элСктричСских характСристик ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°.

    ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ влияния Ρ‚ΠΈΠΏΠ° ΡΠΏΠΈΡ‚Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ Π½Π° элСктричСскиС характСристики Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½Ρ‹Ρ… ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… Π΄ΠΈΠΎΠ΄ΠΎΠ²

    Get PDF
    The device-process simulation of the high-voltage silicon diode was performed at its forming in three types of epitaxial film: 1) 17.0SEPh2.0 (silicon doped phosphor of electron type conductivity with the thickness d = 17 ΞΌm and resistivity of pv = 2.0 Ohm.sm); 2) 25.0SEPh6.0 (d = 25.0 ΞΌm, pv = 6.0 Ohm.sm); 3) 25.0SEPh20.0 (d = 25.0 ΞΌm, pv = 20.0 Ohm.sm). Technological process parameters of diode structure making were defined and its design data was calculated for three types of epitaxial film, the comparison of calculated values with typical ones obtained experimentally was carried out. It was determined that the difference between calculated values and typical ones obtained by experiment is not more then Β±10%. The device modeling of diode was performed and it was investigated how the thickness and resistivity of epitaxial film influence on structural and electrical features of diode.ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ тСхнологичСского ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚Π° ΠΈ элСктричСских характСристик Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠ³ΠΎ Π΄ΠΈΠΎΠ΄Π° ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ Π΅Π³ΠΎ Π² ΡΠΏΠΈΡ‚Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠ΅ Ρ‚Ρ€Π΅Ρ… Ρ‚ΠΈΠΏΠΎΠ²: 17КЭЀ2,0 (ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ фосфором, элСктронного Ρ‚ΠΈΠΏΠ° проводимости Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ d = 17 ΠΌΠΊΠΌ с ΡƒΠ΄Π΅Π»ΡŒ -Π½Ρ‹ΠΌ элСктричСским сопротивлСниСм Ρ€Ρƒ = 2,0 Ом.см); 25,0КЭЀ6,0 (d = 25,0 ΠΌΠΊΠΌ, Ρ€Ρƒ = 6,0 Ом.см); 25,0КЭЀ20,0 (d = 25,0 ΠΌΠΊΠΌ, Ρ€Ρƒ = 20,0 Ом.см). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ расчСт Ρ‚Π°ΠΊΠΈΡ… конструктивных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π΄ΠΈΠΎΠ΄Π½ΠΎΠΉ структуры, ΠΊΠ°ΠΊ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° остаточного окисла, повСрхностноС сопротивлСниС, Π³Π»ΡƒΠ±ΠΈΠ½Π° залСгания p-n-ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² модСлирования ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² с ΠΈΡ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹ΠΌΠΈ значСниями. Рассчитаны зависимости Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ элСктричСского Ρ‚ΠΎΠΊΠ° Π΄ΠΈΠΎΠ΄Π° ΠΎΡ‚ прямого ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ элСктричСских напряТСний, ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… ΠΊ Ρ€-n-ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρƒ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°, для Ρ‚Ρ€Π΅Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΡΠΏΠΈΡ‚Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ. ИсслСдовано влияниС Ρ‚Π°ΠΊΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΡΠΏΠΈΡ‚Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ, ΠΊΠ°ΠΊ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° d ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ΅ элСктричСскоС сопротивлСниС, Π½Π° конструктивныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΈ элСктричСскиС характСристики Π΄ΠΈΠΎΠ΄Π°

    Π£Π‘ΠžΠ’Π•Π Π¨Π•ΠΠ‘Π’Π’ΠžΠ’ΠΠΠ˜Π• Π’Π•Π₯ΠΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠžΠ“Πž МАРШРУВА Π˜Π—Π“ΠžΠ’ΠžΠ’Π›Π•ΠΠ˜Π― И ΠŸΠ Π˜Π‘ΠžΠ ΠΠž-Π’Π•Π₯ΠΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠžΠ• ΠœΠžΠ”Π•Π›Π˜Π ΠžΠ’ΠΠΠ˜Π• Π‘Π˜ΠŸΠžΠ›Π―Π ΠΠžΠ“Πž Π’Π ΠΠΠ—Π˜Π‘Π’ΠžΠ Π БО Π‘Π’ΠΠ’Π˜Π§Π•Π‘ΠšΠžΠ™ Π˜ΠΠ”Π£ΠšΠ¦Π˜Π•Π™

    Get PDF
    The results of the bipolar static induction transistor (BSIT) making process flow improvement and its device-process simulation are presented. The process flow improvement have allowed to reduce number of metal intermediate subject copies (MISC) applied at projection photolithography by one and to receive experimental samples of transistor with required electrical characteristic. The BSIT device simulation was performed with using the developed by authors model of transistor and the software package MOD-1D.ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ тСхнологичСского ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚Π° изготовлСния биполярного транзистора со статичСской ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ (Π‘Π‘Π˜Π’) ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π½ΠΎ-тСхнологичСского модСлирования. Π£ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ количСство ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΠΎΠ² (МПО), ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ„ΠΎΡ‚ΠΎΠ»ΠΈΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, Π½Π° ΠΎΠ΄ΠΈΠ½, ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ транзистора с Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ элСктричСскими характСристиками. ΠŸΡ€ΠΈΠ±ΠΎΡ€Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π‘Π‘Π˜Π’ Π±Ρ‹Π»ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ с использованиСм Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ транзистора ΠΈ комплСкса ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ MOD-1D

    Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials

    Full text link
    We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of "meta-atoms". It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.

    ЧислСнноС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ элСктричСских характСристик глубокосубмикронного МОП-транзистора со структурой Β«ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ Π½Π° изоляторС»

    No full text
    На сСгодняшний дСнь субмикронныС МОП-транзисторныС структуры ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ-Π½Π°-изоляторС (КНИ) ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… элСктронных устройствах, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² качСствС сСнсорных элСмСнтов. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ характСристиками Π½Π° основС этих структур Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° Π±Π΅Π· ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ модСлирования ΠΈΡ… элСктричСских свойств. Для глубокосубмикронных транзисторных структур это вСсьма трудная Π·Π°Π΄Π°Ρ‡Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ слоТныС физичСскиС процСссы ΠΈ эффСкты, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ мСсто Π² ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠΌ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π΅. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ многочастичным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ пСрСноса элСктронов ΠΈ Π΄Ρ‹Ρ€ΠΎΠΊ Π² глубокосубмикронном n-канальном КНИ МОП-транзисторС с Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΊΠ°Π½Π°Π»Π° 100 Π½ΠΌ. ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ явилось исслСдованиС влияния процСсса ΠΌΠ΅ΠΆΠ·ΠΎΠ½Π½ΠΎΠΉ ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° характСристики транзистора, Π° Ρ‚Π°ΠΊΠΆΠ΅ установлСниС Ρ‚Π°ΠΊΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… процСсс ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ сущСствСнноС влияниС Π½Π° Ρ€Π°Π±ΠΎΡ‚Ρƒ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ этих Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² являСтся ΠΊΡ€Π°ΠΉΠ½Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ для Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΈ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ модСлирования Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… устройств Π½Π° основС КНИ-МОП-транзисторных структур. ΠŸΡ€ΠΈ этом основноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΎ Π½Π° сравнСниС Π΄Π²ΡƒΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡƒΡ‡Π΅Ρ‚Π° процСсса ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎ стСпСни ΠΈΡ… влияния Π½Π° Π²ΠΎΠ»ΡŒΡ‚Π°ΠΌΠΏΠ΅Ρ€Π½Ρ‹Π΅ характСристики транзистора. ΠŸΠ΅Ρ€Π²Π°Ρ, аналитичСская модСль, основана Π½Π° ΡˆΠΈΡ€ΠΎΠΊΠΎ извСстном ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ ΠšΠ΅Π»Π΄Ρ‹ΡˆΠ°, Π° Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного расчСта Π·ΠΎΠ½Π½ΠΎΠΉ структуры крСмния. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠšΠ΅Π»Π΄Ρ‹ΡˆΠ° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π±ΠΎΠ»Π΅Π΅ быстрому росту Ρ‚ΠΎΠΊΠ° стока ΠΈ, ΠΊΠ°ΠΊ слСдствиС, ΠΊ ΡΠΊΠΎΡ€Π΅ΠΉΡˆΠ΅ΠΌΡƒ Π»Π°Π²ΠΈΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΠ±ΠΎΡŽ КНИ МОП-транзисторной структуры. Π‘Π΄Π΅Π»Π°Π½ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π±ΠΎΡ€ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя рассматриваСмыми модСлями ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ критичСским ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ элСктричСских характСристик ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°

    NUMERICAL SIMULATION OF ELECTRIC CHARACTERISTICS OF DEEP SUBMICRON SILICON-ON-INSULATOR MOS TRANSISTOR

    No full text
    Today submicron silicon-on-insulator (SOI) MOSFET structures are widely used in different electronic components and also can be used as sensing elements in some applications. The development of devices based on the structures with specified characteristics is impossible without computer simulation of their electric properties. The latter is not a trivial task since many complicated physical processes and effects must be taken into account. In current study ensemble Monte Carlo simulation of electron and hole transport in deep submicron n-channel SOI MOSFET with 100 nm channel length is performed. The aim of the study is investigation of the influence of interband impact ionization process on the device characteristics and determination of the transistor operation modes when impact ionization process starts to make an appreciable influence on the device functioning. Determination of the modes is very important for adequate and accurate modeling of different devices on the basis of SOI MOSFET structures. Main focus thereby is maid on the comparison of the use of two models of impact ionization process treatment with respect to their influence on the transistor current-voltage characteristics. The first model is based on the frequently used Keldysh approach and the other one utilizes the results obtained via numerical calculations of silicon band structure. It is shown that the use of Keldysh impact ionization model leads to much faster growth of the drain current and provides earlier avalanche breakdown for the SOI MOSFET. It is concluded that the choice between the two considered impact ionization models may be critical for simulation of the device electric characteristics
    • …
    corecore