89 research outputs found

    Ophthalmic Manifestations of Congenital Zika Syndrome in Colombia and Venezuela

    Get PDF
    IMPORTANCE The ocular manifestations and sequelae of Zika virus infection are not well known. Recently, the World Health Organization changed the declaration of Zika as a public health emergency and designated the viral outbreak and related microcephaly clusters as a long-term program of work. This change indicates the urgent need to evaluate and document ophthalmic manifestations in patients for timely management of this disease. In addition, confirmation whether the public health problem in Brazil extends to other regions in South America is needed. OBJECTIVE To report the ocular manifestations of congenital Zika syndrome with microcephaly in Colombia and Venezuela. DESIGN, SETTING, AND PARTICIPANTS This prospective case series included 43 patients from 2 ophthalmic centers in Colombia and Venezuela who underwent evaluation from October 1, 2015, through June 30, 2016, and were clinically diagnosed with congenital Zika syndrome. Twenty patients were Hispanic; 13, African; 8, white; and 2, Native American. INTERVENTIONS Ophthalmic and systemic evaluations and serologic testing were performed on all infants. Patients underwent external ocular examination and dilated ophthalmoscopy. Serologic testing ruled out toxoplasmosis, rubella, cytomegalovirus, syphilis, and human immunodeficiency virus. MAIN OUTCOMES AND MEASURES Ophthalmic manifestations of congenital Zika syndrome. RESULTS Of the 43 patients included in this series (28 female and 15 male), the mean (SD) age at examination was 2.1 (1.5) months. The mothers of all the children had no ophthalmic findings and did not report ocular symptoms during pregnancy. All patients had bilateral ophthalmic manifestations. Optic nerve findings included hypoplasia with the double-ring sign, pallor, and increased cup-disc ratio in 5 patients (11.6%). Macular abnormalities included mild to severe pigment mottling in 27 patients (63%) and lacunar maculopathy in 3 (6.9%). Chorioretinal scarring was present in 3 patients (7%). Eleven patients (26%) had a combination of lesions in the posterior pole. Five patients (12%) were diagnosed with congenital glaucoma, characterized by the clinical triad of epiphora, photophobia, and blepharospasm; increased intraocular pressure; corneal clouding at birth; and buphthalmos. These data reveal that 12%(95%CI, 5%-24%) of cases of congenital Zika with microcephaly had anterior segment abnormalities and 88%(95%CI, 76%-94%) had important macular and optic nerve abnormalities. The visual sequelae of these ophthalmic manifestations remain unknown. CONCLUSIONS AND RELEVANCE Congenital Zika syndrome in the current study had severe ocular abnormalities, and all patients had bilateral involvement. Ocular findings were focal macular pigment mottling, chorioretinal atrophy with a predilection for the macular area, congenital glaucoma and optical nerve hypoplasia, and optic disc abnormalities. Ophthalmic examination is recommended in patients with congenital Zika syndrome

    Targeted molecular characterization shows differences between primary and secondary myelofibrosis

    Get PDF
    INTRODUCTION: In BCR-ABL1-negative myeloproliferative neoplasms, myelofibrosis (MF) is either primary (PMF) or secondary (SMF) to polycythemia vera or essential thrombocythemia. MF is characterized by an increased risk of transformation to acute myeloid leukemia (AML) and a shortened life expectancy. METHODS: Because natural histories of PMF and SMF are different, we studied by targeted next generation sequencing the differences in the molecular landscape of 86 PMF and 59 SMF and compared their prognosis impact. RESULTS: PMF had more ASXL1 (47.7%) and SRSF2 (14%) gene mutations than SMF (respectively 27.1% and 3.4%, P = .04). Poorer survival was associated with RNA splicing mutations (especially SRSF2) and TP53 in PMF (P = .0003), and with ASXL1 and TP53 mutations in SMF (P < .0001). These mutations of poor prognosis were associated with biological features of scoring systems (DIPSS and MYSEC-PM score). Mutations in TP53/SRSF2 in PMF or TP53/ASXL1 in SMF were more frequent as the risk of these scores increased. This allowed for a better stratification of MF patients, especially within the DIPSS intermediate-1 risk group (DIPSS) or the MYSEC-PM high risk group. AML transformation occurred faster in SMF than in PMF and patients who transformed to AML were more SRSF2-mutated and less CALR-mutated at MF sampling. CONCLUSIONS: PMF and SMF have different but not specific molecular profiles and different prognosis depending on the molecular profile. This may be due to differences in disease history. Combining mutations and existing scores should improve prognosis assessment

    Glaucomatous Optic Neuropathy Associated with Nocturnal Dip in Blood Pressure: Findings from the Maracaibo Aging Study

    Get PDF
    Purpose—To determine which nocturnal blood pressure (BP) parameters (low levels or extreme dipper status) are associated with an increased risk of glaucomatous damage in Hispanics. Design—Observational cross-sectional study. Participants—A subset (n=93) of the participants from the Maracaibo Aging Study (MAS) who met the study eligibility criteria were included. These participants — who were at least 40 years of age — had measurements for optical tomography coherence, visual field tests, 24-hour BP, office BP, and intraocular pressureHg. Methods—Univariate and multivariate logistic regression analyses under the generalized estimating equations (GEE) framework were used to examine the relationships between glaucomatous damage and BP parameters, with particular attention to drops in nocturnal BP. Main Outcome Measures—Glaucomatous optic neuropathy (GON) based on the presence of optic nerve damage and visual field defects. Results—The mean age was 61.9 years, and 87.1% were women. Of 185 eyes evaluated, 50 (27.0%) had signs of GON. Individuals with GON had significantly lower 24-hour and nighttime diastolic BP levels than those without. However, results of the multivariate GEE models indicated that the glaucomatous damage was not related to the average systolic or diastolic BP levels measured over 24 hours, daytime, or nighttime. In contrast, extreme drops in nighttime systolic and diastolic BP (\u3e20% compared with daytime BP) were significant risk factors for glaucomatous damage (odds ratio=19.78 and 5.55, respectively). Conclusions—In this population, the link between nocturnal BP and GON is determined by extreme dipping effects rather than low nocturnal BP levels alone. Further studies considering extreme drops in nocturnal BP in individuals at high risk of glaucoma are warranted

    Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene mutation is an important mechanism of myeloid leukemogenesis. However, the number and combination of gene mutated in myeloid malignancies is still a matter of investigation.</p> <p>Methods</p> <p>We searched for mutations in the <it>ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 </it>and <it>WT1 </it>genes in 65 myelodysplastic syndromes (MDSs) and 64 acute myeloid leukemias (AMLs) without balanced translocation or complex karyotype.</p> <p>Results</p> <p>Mutations in <it>ASXL1 </it>and <it>CBL </it>were frequent in refractory anemia with excess of blasts. Mutations in <it>TET2 </it>occurred with similar frequency in MDSs and AMLs and associated equally with either <it>ASXL1 </it>or <it>NPM1 </it>mutations. Mutations of <it>RUNX1 </it>were mutually exclusive with <it>TET2 </it>and combined with <it>ASXL1 </it>but not with <it>NPM1</it>. Mutations in <it>FLT3 (</it>mutation and internal tandem duplication), <it>IDH1</it>, <it>IDH2</it>, <it>NPM1 </it>and <it>WT1 </it>occurred primarily in AMLs.</p> <p>Conclusion</p> <p>Only 14% MDSs but half AMLs had at least two mutations in the genes studied. Based on the observed combinations and exclusions we classified the 12 genes into four classes and propose a highly speculative model that at least a mutation in one of each class is necessary for developing AML with simple or normal karyotype.</p

    Acute Progression of BCR-FGFR1 Induced Murine B-Lympho/Myeloproliferative Disorder Suggests Involvement of Lineages at the Pro-B Cell Stage

    Get PDF
    Constitutive activation of FGFR1, through rearrangement with various dimerization domains, leads to atypical myeloproliferative disorders where, although T cell lymphoma are common, the BCR-FGFR1 chimeric kinase results in CML-like leukemia. As with the human disease, mouse bone marrow transduction/transplantation with BCR-FGFR1 leads to CML-like myeloproliferation as well as B-cell leukemia/lymphoma. The murine disease described in this report is virtually identical to the human disease in that both showed bi-lineage involvement of myeloid and B-cells, splenomegaly, leukocytosis and bone marrow hypercellularity. A CD19+ IgM− CD43+ immunophenotype was seen both in primary tumors and two cell lines derived from these tumors. In all primary tumors, subpopulations of these CD19+ IgM− CD43+ were also either B220+ or B220−, suggesting a block in differentiation at the pro-B cell stage. The B220− phenotype was retained in one of the cell lines while the other was B220+. When the two cell lines were transplanted into syngeneic mice, all animals developed the same B-lymphoblastic leukemia within 2-weeks. Thus, the murine model described here closely mimics the human disease with bilineage myeloid and B-cell leukemia/lymphoma which provides a representative model to investigate therapeutic intervention and a better understanding of the etiology of the disease

    Multicolour-banding fluorescence in situ hybridisation (mbanding-FISH) to identify recurrent chromosomal alterations in breast tumour cell lines

    Get PDF
    Recurrent chromosome breakpoints in tumour cells may point to cancer genes, but not many have been molecularly characterised. We have used multicolour-banding fluorescence in situ hybridisation (mbanding-FISH) on breast tumour cell lines to identify regions of chromosome break created by inversions, duplications, insertions and translocations on chromosomes 1, 5, 8, 12 and 17. We delineate a total of 136 regions of break, some of them occurring with high frequency. We further describe two examples of dual-colour FISH characterisation of breakpoints, which target the 1p36 and 5p11–12 regions. Both breaks involve genes whose function is unknown to date. The mbanding-FISH strategy constitutes an efficient first step in the search for potential cancer genes

    Radiation Induced Apoptosis of Murine Bone Marrow Cells is Independent of Early Growth Response 1 (EGR1)

    Get PDF
    An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA) nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies

    A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability

    Get PDF
    c-Myb is an essential hematopoietic transcription factor that controls proliferation and differentiation of progenitors during blood cell development. Whereas sumoylation of the C-terminal regulatory domain (CRD) is known to have a major impact on the activity of c-Myb, no role for noncovalent binding of small ubiquitin-like modifier (SUMO) to c-Myb has been described. Based on the consensus SUMO-interacting motif (SIM), we identified and examined putative SIMs in human c-Myb. Interaction and reporter assays showed that the SIM in the in the transactivation domain of c-Myb (V 267 NIV) is functional. This motif is necessary for c-Myb to be able to interact noncovalently with SUMO, preferentially SUMO2/3. Destroying the SUMO-binding properties by mutation resulted in a large increase in the transactivation potential of c-Myb. Mutational analysis and overexpression of conjugation-defective SUMO argued against intramolecular repression caused by sumoylated CRD and in favor of SUMO-dependent repression in trans. Using both a myeloid cell line-based assay and a primary hematopoietic cell assay, we addressed the transforming abilities of SUMO binding and conjugation mutants. Interestingly, only loss of SUMO binding, and not SUMO conjugation, enhanced the myeloid transformational potential of c-Myb. c-Myb with the SIM mutated conferred a higher proliferative ability than the wild-type and caused an effective differentiation block. This establishes SUMO binding as a mechanism involved in modulating the transactivation activity of c-Myb, and responsible for keeping the transforming potential of the oncoprotein in check
    corecore