367 research outputs found
Slow and velocity-tunable beams of metastable He by multistage Zeeman deceleration
Metastable helium molecules (He) have been generated by striking a
discharge in a supersonic expansion of helium gas from a pulsed valve. When
operating the pulsed valve at room temperature, 77K, and 10K, the mean velocity
of the supersonic beam was measured to be 1900m/s, 980m/s, and 530m/s,
respectively. A 55-stage Zeeman decelerator operated in a phase-stable manner
was then used to further reduce the beam velocity and tune it in the range
between 100 and 150m/s. The internal-state distribution of the decelerated
sample was established by photoionization spectroscopy.Comment: 10 pages, 7 figure
Multistage Zeeman deceleration of metastable neon
A supersonic beam of metastable neon atoms has been decelerated by exploiting
the interaction between the magnetic moment of the atoms and time-dependent
inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91
deceleration solenoids, the atoms were decelerated from an initial velocity of
580m/s to final velocities as low as 105m/s, corresponding to a removal of more
than 95% of their initial kinetic energy. The phase-space distribution of the
cold, decelerated atoms was characterized by time-of-flight and imaging
measurements, from which a temperature of 10mK was obtained in the moving frame
of the decelerated sample. In combination with particle-trajectory simulations,
these measurements allowed the phase-space acceptance of the decelerator to be
quantified. The degree of isotope separation that can be achieved by multistage
Zeeman deceleration was also studied by performing experiments with pulse
sequences generated for Ne and Ne.Comment: 16 pages, 15 figure
Sisyphus Cooling of Electrically Trapped Polyatomic Molecules
The rich internal structure and long-range dipole-dipole interactions
establish polar molecules as unique instruments for quantum-controlled
applications and fundamental investigations. Their potential fully unfolds at
ultracold temperatures, where a plethora of effects is predicted in many-body
physics, quantum information science, ultracold chemistry, and physics beyond
the standard model. These objectives have inspired the development of a wide
range of methods to produce cold molecular ensembles. However, cooling
polyatomic molecules to ultracold temperatures has until now seemed
intractable. Here we report on the experimental realization of opto-electrical
cooling, a paradigm-changing cooling and accumulation method for polar
molecules. Its key attribute is the removal of a large fraction of a molecule's
kinetic energy in each step of the cooling cycle via a Sisyphus effect,
allowing cooling with only few dissipative decay processes. We demonstrate its
potential by reducing the temperature of about 10^6 trapped CH_3F molecules by
a factor of 13.5, with the phase-space density increased by a factor of 29 or a
factor of 70 discounting trap losses. In contrast to other cooling mechanisms,
our scheme proceeds in a trap, cools in all three dimensions, and works for a
large variety of polar molecules. With no fundamental temperature limit
anticipated down to the photon-recoil temperature in the nanokelvin range, our
method eliminates the primary hurdle in producing ultracold polyatomic
molecules. The low temperatures, large molecule numbers and long trapping times
up to 27 s will allow an interaction-dominated regime to be attained, enabling
collision studies and investigation of evaporative cooling toward a BEC of
polyatomic molecules
Doppler-Free Spectroscopy of Weak Transitions: An Analytical Model Applied to Formaldehyde
Experimental observation of Doppler-free signals for weak transitions can be
greatly facilitated by an estimate for their expected amplitudes. We derive an
analytical model which allows the Doppler-free amplitude to be estimated for
small Doppler-free signals. Application of this model to formaldehyde allows
the amplitude of experimentally observed Doppler-free signals to be reproduced
to within the experimental error.Comment: 7 pages, 7 figures, 1 table, v2: many small improvements + corrected
line assignmen
Solutions to Maxwell's Equations using Spheroidal Coordinates
Analytical solutions to the wave equation in spheroidal coordinates in the
short wavelength limit are considered. The asymptotic solutions for the radial
function are significantly simplified, allowing scalar spheroidal wave
functions to be defined in a form which is directly reminiscent of the
Laguerre-Gaussian solutions to the paraxial wave equation in optics.
Expressions for the Cartesian derivatives of the scalar spheroidal wave
functions are derived, leading to a new set of vector solutions to Maxwell's
equations. The results are an ideal starting point for calculations of
corrections to the paraxial approximation
microRNA profiling in Epstein-Barr virus-associated B-cell lymphoma
The Epstein-Barr virus (EBV) is an oncogenic human Herpes virus found in ∼15% of diffuse large B-cell lymphoma (DLBCL). EBV encodes miRNAs and induces changes in the cellular miRNA profile of infected cells. MiRNAs are small, non-coding RNAs of ∼19-26 nt which suppress protein synthesis by inducing translational arrest or mRNA degradation. Here, we report a comprehensive miRNA-profiling study and show that hsa-miR-424, -223, -199a-3p, -199a-5p, -27b, -378, -26b, -23a, -23b were upregulated and hsa-miR-155, -20b, -221, -151-3p, -222, -29b/c, -106a were downregulated more than 2-fold due to EBV-infection of DLBCL. All known EBV miRNAs with the exception of the BHRF1 cluster as well as EBV-miR-BART15 and -20 were present. A computational analysis indicated potential targets such as c-MYB, LATS2, c-SKI and SIAH1. We show that c-MYB is targeted by miR-155 and miR-424, that the tumor suppressor SIAH1 is targeted by miR-424, and that c-SKI is potentially regulated by miR-155. Downregulation of SIAH1 protein in DLBCL was demonstrated by immunohistochemistry. The inhibition of SIAH1 is in line with the notion that EBV impedes various pro-apoptotic pathways during tumorigenesis. The down-modulation of the oncogenic c-MYB protein, although counter-intuitive, might be explained by its tight regulation in developmental processe
Measurement of the lifetime of Pb, Pb and Pb beams at 4.2 MeV per nucleon subject to electron cooling
By measuring the lifetime of stored beams, the recombination of the ions with cooling electrons was investigated. Rates found are larger than expected for radiative electron capture and significantly higher for Pb53+ than for Pb54+ and Pb52+. These results are important for the design of the lead ion injection system for the Large Hadron Collider and for recombination theories
Singular Cucker-Smale Dynamics
The existing state of the art for singular models of flocking is overviewed,
starting from microscopic model of Cucker and Smale with singular communication
weight, through its mesoscopic mean-filed limit, up to the corresponding
macroscopic regime. For the microscopic Cucker-Smale (CS) model, the
collision-avoidance phenomenon is discussed, also in the presence of bonding
forces and the decentralized control. For the kinetic mean-field model, the
existence of global-in-time measure-valued solutions, with a special emphasis
on a weak atomic uniqueness of solutions is sketched. Ultimately, for the
macroscopic singular model, the summary of the existence results for the
Euler-type alignment system is provided, including existence of strong
solutions on one-dimensional torus, and the extension of this result to higher
dimensions upon restriction on the smallness of initial data. Additionally, the
pressureless Navier-Stokes-type system corresponding to particular choice of
alignment kernel is presented, and compared - analytically and numerically - to
the porous medium equation
- …