218 research outputs found

    Dissociating anticipation from perception: Acute pain activates default mode network.

    Get PDF
    Few studies have explored the effect of acute pain on attentional networks and on the default mode network. Moreover, these studies convey conflicting results, seemingly caused by design. To reassess this issue, we studied 20 healthy subjects with functional magnetic resonance imaging while delivering painful electric shocks. The design was purposely constructed to separate rest, anticipation, and pain perception. We found that default mode network activity in response to pain was biphasic. It deactivated during anticipation when the dorsal attentional network was activated. During pain perception, the default mode network was activated, as were attentional networks. The left posterior fusiform gyrus showed the same dynamics as the default mode network, and its activity was negatively correlated to the subject\u27s pain intensity rating. The associative pregenual anterior cingulate cortex seemed to play a key role in these coactivations. These results concur with data from the literature showing that enhanced pain perception results in greater default mode network activity and that the anticorrelation between the default mode network and the dorsal attentional network disappears in chronic pain patients

    The effect of video-guidance on passive movement in patients with cerebral palsy: fMRI study

    Get PDF
    In patients with cerebral palsy (CP), neuroimaging studies have demonstrated that passive movement and action–observation tasks have in common to share neuronal activation in all or part of areas involved in motor system. Action observation with simultaneous congruent passive movements may have additional effects in the recruitment of brain motor areas. The aim of this functional magnetic resonance imaging (fMRI) study was to examine brain activation in patients with unilateral CP during passive movement with and without simultaneous observation of simple hand movement. Eighteen patients with unilateral CP (fourteen male, mean age 14 years and 2 months) participated in the study. Using fMRI block design, brain activation following passive simple opening–closing hand movement of either the paretic or nonparetic hand with and without simultaneous observation of a similar movement performed by either the left or right hand of an actor was compared. Passive movement of the paretic hand performed simultaneously to the observation of congruent movement activated more “higher motor areas” including contralesional pre-supplementary motor area, superior frontal gyrus (extending to premotor cortex), and superior and inferior parietal regions than nonvideo-guided passive movement of the paretic hand. Passive movement of the paretic hand recruited more ipsilesional sensorimotor areas compared to passive movement of the nonparetic hand. Our study showed that the combination of observation of congruent hand movement simultaneously to passive movement of the paretic hand recruits more motor areas, giving neuronal substrate to propose video-guided passive movement of paretic hand in CP rehabilitation

    Right Hemisphere Cognitive Functions: From Clinical and Anatomic Bases to Brain Mapping During Awake Craniotomy Part I: Clinical and Functional Anatomy

    Get PDF
    The nondominant hemisphere (usually the right) is responsible for primary cognitive functions such as visuospatial and social cognition. Awake surgery using direct electric stimulation for right cerebral tumor removal remains challenging because of the complexity of the functional anatomy and difficulties in adapting standard bedside tasks to awake surgery conditions. An understanding of semiology and anatomic bases, along with an analysis of the available cognitive tasks for visuospatial and social cognition per operative mapping allow neurosurgeons to better appreciate the functional anatomy of the right hemisphere and its relevance to tumor surgery. In this article, the first of a 2-part review, we discuss the anatomic and functional basis of right hemisphere function. Whereas part II of the review focuses primarily on semiology and surgical management of right-sided tumors under awake conditions, this article provides a comprehensive review of knowledge underpinning awake surgery on the right hemisphere

    Right Hemisphere Cognitive Functions: From Clinical and Anatomical Bases to Brain Mapping During Awake Craniotomy. Part II: Neuropsychological Tasks and Brain Mapping

    Get PDF
    The nondominant hemisphere (usually right) is determinant for main cognitive functions such as visuospatial and social cognitions. Awake surgery using direct electrical stimulation for right cerebral tumor removal remains challenging due to the complexity of the functional anatomy and the difficulties in adapting the classical bedside tasks for awake surgery conditions. An understanding of semiology, anatomical bases, and an analysis of the available cognitive tasks for visuospatial and social cognition per operative mapping will allow neurosurgeons to better appreciate the functional anatomy of the right hemisphere and its application to tumor surgery. In this second review of 2 parts, we discuss the pertinence of the neuropsychological tests available for the study of nondominant hemisphere functions for the surgery on right-sided tumors in awake surgery conditions. In conjunction with part I of the review, which focuses primarily on the anatomical, functional, and semiological basis of the right hemisphere function, this article provides a comprehensive review of current knowledge supporting the awake surgery in the right hemisphere

    A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter

    Get PDF
    A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS)

    Functional MRI comparison of passive and active movement: possible inhibitory role of supplementary motor area:

    Get PDF
    Recent studies have hypothesized that the supplementary motor area plays a role in motor inhibition. To study this possible role, we used functional MRI study to compare conditions, which require various level of inhibition of motor patterns. Seventeen healthy participants were scanned while executing – actively or passively – rhythmic opening/closing movements of their right hand, with and without congruent visual information. The contrast passive>active movement in the visual guidance condition which requires inhibition in order ‘not’ to perform the movement, yields to significant activation of areas commonly involved in the inhibitory brain circuitry among which, notably, controlateral supplementary motor area

    The presupplementary area within the language network: a resting state functional magnetic resonance imaging functional connectivity analysis

    Get PDF
    The presupplementary motor area (pre-SMA) is involved in volitional selection. Despite the lateralization of the language network and different functions for both pre-SMA, few studies have reported the lateralization of pre-SMA activity and very little is known about the possible lateralization of pre-SMA connectivity. Via functional connectivity analysis, we sought to understand how the language network may be connected to other intrinsic connectivity networks (ICNs) through the pre-SMA. We performed a spatial independent component analysis of resting state functional magnetic resonance imaging in 30 volunteers to identify the language network. Subsequently, we applied seed-to-voxel functional connectivity analyses centered on peaks detected in the pre-SMA. Three signal peaks were detected in the pre-SMA. The left rostral pre-SMA intrinsic connectivity network (LR ICN) was left lateralized in contrast to bilateral ICNs associated to right pre-SMA peaks. The LR ICN was anticorrelated with the dorsal attention network and the right caudal pre-SMA ICN (RC ICN) anticorrelated with the default mode network. These two ICNs overlapped minimally. In contrast, the right rostral ICN overlapped the LR ICN. Both right ICNs overlapped in the ventral attention network (vATT). The bilateral connectivity of the right rostral pre-SMA may allow right hemispheric recruitment to process semantic ambiguities. Overlap between the right pre-SMA ICNs in vATT may contribute to internal thought to external environment reorientation. Distinct ICNs connected to areas involved in lexico-syntactic selection and phonology converge in the pre-SMA, which may constitute the resolution space of competing condition-action associations for speech production

    Effect of observation of simple hand movement on brain activations in patients with unilateral cerebral palsy: an fMRI study

    Get PDF
    The aim of this functional magnetic resonance imaging (fMRI) study was to examine and compare brain activation in patients with unilateral cerebral palsy (CP) during observation of simple hand movement performed by the paretic and nonparetic hand. Nineteen patients with clinical unilateral CP (14 male, mean age 14 years, 7–21 years) participated in the study. Hand motor impairment was assessed using the sequential finger opposition task. Using fMRI block design, brain activation was examined following observation at rest of a simple opening-closing hand movement, performed by either the left or right hand of an actor. Eighteen fMRI dataset were analyzed. Observing hand movement produced large bilateral activations in temporo-parieto-fronto-occipital network, comprising most of the nodes of the well described action-observation network. For either side, observing hand movements recruits the primary motor cortex (M1), contralateral to the viewed hand, as would be expected in healthy persons. Viewing movement performed by an actor\u27s hand representing the paretic side of patients activated more strongly ipsilesional M1 than viewing movement performed by an actor\u27s hand representing the nonparetic side of patients. Observation of hand movement in patients with CP engaged the motor execution network regardless of the degree of motor impairment
    • 

    corecore