17 research outputs found

    Structural and chemical characterization of the back contact region in high efficiency CdTe solar cells

    Get PDF
    Cadmium telluride (CdTe) is the leading commercialized thin-film photovoltaic technology. Copper is commonly used in back contacts to obtain high efficiency, but has also been implicated as a harmful factor for device stability. T hus it is critical to understand its composition and distribution within complete devices. In this work the composition and structure of the back contact region was examined in high efficiency devices (-16%) contacted using a ZnTe:Cu buffer layer followed by gold metallization. T he microstructure was examined in the asdeposited state and after rapid thermal processing (RTP) using high resolution transmission electron microscopy and EDX chemical mapping. After RTP the ZnTe exhibits a bilayer structure with polycrystalline, twinned grains adjacent to Au and an amorphous region adjacent to CdTe characterized by extensive Cd-Zn interdiffusion. T he copper that is co-deposited uniformly within ZnTe is found to segregate dramatically after RTP activation, either collecting near the ZnTe/Au interface or forming CUxTe clusters in CdTe at defects or grain boundaries near the interface with ZnTe. Chlorine, present throughout CdTe and concentrated at grain boundaries, does not penetrate significantly into the back contact region during RTP activation

    Congenital Hypogonadotropic Hypogonadism Due to GNRH Receptor Mutations in Three Brothers Reveal Sites Affecting Conformation and Coupling

    Get PDF
    Congenital hypogonadotropic hypogonadism (CHH) is characterized by low gonadotropins and failure to progress normally through puberty. Mutations in the gene encoding the GnRH receptor (GNRHR1) result in CHH when present as compound heterozygous or homozygous inactivating mutations. This study identifies and characterizes the properties of two novel GNRHR1 mutations in a family in which three brothers display normosmic CHH while their sister was unaffected. Molecular analysis in the proband and the affected brothers revealed two novel non-synonymous missense GNRHR1 mutations, present in a compound heterozygous state, whereas their unaffected parents possessed only one inactivating mutation, demonstrating the autosomal recessive transmission in this kindred and excluding X-linked inheritance equivocally suggested by the initial pedigree analysis. The first mutation at c.845 C>G introduces an Arg substitution for the conserved Pro 282 in transmembrane domain (TMD) 6. The Pro282Arg mutant is unable to bind radiolabeled GnRH analogue. As this conserved residue is important in receptor conformation, it is likely that the mutation perturbs the binding pocket and affects trafficking to the cell surface. The second mutation at c.968 A>G introduces a Cys substitution for Tyr 323 in the functionally crucial N/DPxxY motif in TMD 7. The Tyr323Cys mutant has an increased GnRH binding affinity but reduced receptor expression at the plasma membrane and impaired G protein-coupling. Inositol phosphate accumulation assays demonstrated absent and impaired Gαq/11 signal transduction by Pro282Arg and Tyr323Cys mutants, respectively. Pretreatment with the membrane permeant GnRHR antagonist NBI-42902, which rescues cell surface expression of many GNRHR1 mutants, significantly increased the levels of radioligand binding and intracellular signaling of the Tyr323Cys mutant but not Pro282Arg. Immunocytochemistry confirmed that both mutants are present on the cell membrane albeit at low levels. Together these molecular deficiencies of the two novel GNRHR1 mutations lead to the CHH phenotype when present as a compound heterozygote

    Structural and chemical evolution of the CdS:O window layer during individual CdTe solar cell processing steps

    No full text
    © 2017 Elsevier Ltd Oxygenated cadmium sulfide (CdS:O) is often used as the n-type window layer in high-performance CdTe heterojunction solar cells. The as-deposited layer prepared by reactive sputtering is XRD amorphous, with a bulk composition of CdS 0.8 O 1.2 . Recently it was shown that this layer undergoes significant transformation during device fabrication, but the roles of the individual high temperature processing steps was unclear. In this work high resolution transmission electron microscopy coupled to elemental analysis was used to understand the evolution of the heterojunction region through the individual high temperature fabrication steps of CdTe de position, CdCl 2 activation, and back contact activation. It is found that during CdTe deposition by close spaced sublimation at 600 °C the CdS:O film undergoes recrystallization, accompanied by a significant (∼30%) reduction in thickness. It is observed that oxygen segregates during this step, forming a bi-layer morphology consisting of nanocrystalline CdS adjacent to the tin oxide contact and an oxygen-rich layer adjacent to the CdTe absorber. This bilayer structure is then lost during the 400 °C CdCl 2 treatment where the film transforms into a heterogeneous structure with cadmium sulfate clusters distributed randomly throughout the window layer. The thickness of window layer remains essentially unchanged after CdCl 2 treatment, but a ∼25 nm graded interfacial layer between CdTe and the window region is formed. Finally, the rapid thermal processing step used to activate the back contact was found to have a negligible impact on the structure or composition of the heterojunction region

    Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes

    No full text
    BACKGROUND: Kallmann's syndrome (KS) is a clinically and genetically heterogeneous disorder consisting of idiopathic hypogonadotropic hypogonadism (IHH) and anosmia. Mutations in KAL1 causing the X-linked form of KS have been identified in 10% of all KS patients and consistently result in a severe reproductive phenotype. KAL1 gene encodes for anosmin-1, a key protein involved in olfactory and GnRH neuronal migration through a putative interaction with FGFR1. Heterozygous mutations in the FGFR1 gene accompanied by a high frequency of cleft palate and other facial dysmorphisms were recently identified in 8% of a large KS cohort, yet the reproductive phenotype of KS patients harboring FGFR1 mutations has not been described. RESULTS: One hundred and fifty probands with KS (130 males and 20 females) were studied to determine the frequency and distribution of FGFR1 mutations and their detailed reproductive phenotypes. Fifteen heterozygous mutations in unrelated probands were identified. Twelve missense mutations (p.R78C, p.V102I, p.D224H, p.G237D, p.R254Q, p.V273M, p.E274G, p.Y339C, p.S346C, p.I538V, p.G703S and p.G703R) were distributed among the first, second and third immunoglobulin-like domains (D1-D3), as well as the tyrosine kinase domain (TKD). The mutations Y339C and S346C are located in exon 8B and code for the isoform FGFR1c. Additionally, two nonsense mutations (p.T585X and p.R622X) were documented in the TKD of the protein. A wide spectrum of reproductive function was observed among KS probands including: (1) a severe phenotype demonstrated by microphallus, cryptorchidism, no pubertal development, undetectable serum gonadotropins and low serum testosterone (T) and inhibin B; (2) partial pubertal development; (3) the fertile eunuch variant of IHH with normal testicular size and active spermatogenesis with a reversal of HH after T therapy. In addition, we found an even wider spectrum of reproductive function within pedigrees carrying an FGFR1 mutation ranging from IHH to delayed puberty to normal reproductive function (anosmia only or asymptomatic carriers). These observations strongly suggest a role for other genes that modify the phenotype of FGFR1 mutations. CONCLUSION: KS patients and family members carrying an FGFR1 mutation present a broad spectrum of pubertal development in contrast to the almost uniform severe clinical phenotype described in KS subjects with a KAL1 mutation. Additionally, this report implicates the isoform FGFR1c in the pathogenesis of K

    The roles of ZnTe buffer layers on CdTe solar cell performance

    No full text
    The use of ZnTe buffer layers at the back contact of CdTe solar cells has been credited with contributing to recent improvements in both champion cell efficiency and module stability. To better understand the controlling physical and chemical phenomena, high resolution transmission electron microscopy (HR-TEM) and atom probe tomography (APT) were used to study the evolution of the back contact region during rapid thermal processing (RTP) of this layer. After activation the ZnTe layer, initially nanocrystalline and homogenous, transforms into a bilayer structure consisting of a disordered region in contact with CdTe characterized by significant Cd-Zn interdiffusion, and a nanocrystalline layer that shows evidence of grain growth and twin formation. Copper, co-evaporated uniformly within ZnTe, is found to dramatically segregate and aggregate after RTP, either collecting near the ZnTe|Au interface or forming CuxTe clusters in the CdTe layer at defects or grain boundaries near the interface. Analysis of TEM images revealed that Zn accumulates at the edge of these clusters, and three-dimensional APT images confirmed that these are core-shell nanostructures consisting of Cu1.4Te clusters encased in Zn. These changes in morphology and composition are related to cell performance and stability

    Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism

    No full text
    Mutations in KAL1 and FGFR1 cause Kallmann syndrome (KS), whereas mutations in the GNRHR and GPR54 genes cause idiopathic hypogonadotropic hypogonadism with normal olfaction (nIHH). Mixed pedigrees containing both KS and nIHH have also been described; however, the genetic cause of these rare cases is unknown. We examined the FGFR1 gene in seven nIHH subjects who either belonged to a mixed pedigree (n = 5) or who had associated midline defects (n = 2). Heterozygous FGFR1 mutations were found in three of seven unrelated nIHH probands with normal MRI of the olfactory system: (i) G237S in an nIHH female and a KS brother; (ii) (P722H and N724K) in an nIHH male missing two teeth and his mother with isolated hyposmia; and (iii) Q680X in a nIHH male with cleft lip/palate and missing teeth, his brother with nIHH, and his father with delayed puberty. We show that these mutations lead to receptor loss-of-function. The Q680X leads to an inactive FGFR1, which lacks a major portion of the tyrosine kinase domain (TKD). The G237S mutation inhibits proper folding of D2 of the FGFR1 and likely leads to the loss of cell-surface expression of FGFR1. In contrast, the (P722H and N724K) double mutation causes structural perturbations in TKD, reducing the catalytic activity of TKD. We conclude that loss-of-function mutations in FGFR1 cause nIHH with normal MRI of the olfactory system. These mutations also account for some of the mixed pedigrees, thus challenging the current idea that KS and nIHH are distinct entities
    corecore