1,486 research outputs found

    The rise and fall of the compact jet in GRO J1655-40

    Get PDF
    In this work, we present some preliminary results on a multi-wavelength (radio/infrared/optical/X-ray) study of GRO J1655-40 during its 2005 outburst. We focus on the broadband spectral energy distribution during the different stages of the outburst. In particular, using this unprecedented coverage, and especially thanks to the new constraints given in the mid-IR by Spitzer, we can test the physical self-consistent disk-jet model during the hard state, where the source shows radio emission from a compact jet. The hard state broadband spectra of the observations during the decay of the outburst, are fairly well fit using the jet model with parameters overall similar to those found for Cyg X-1 and GX 339-4 in a previous work. However, we find that, compared to the other two BHs, GRO J1655-40 has a much higher jet power (at least a factor of 3), and that, most notably, the model seems to underestimate the radio emissio

    Galactic black holes in the hard state, a multiwavelength view of accretion and ejection

    Get PDF
    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with multi-wavelength campaigns using RXTE, SWIFT, SUZAKU, SPITZER, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the SWIFT results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including SPITZER data) of GRO J 1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of selected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objectives of our group

    A Phase Lag between Disk and Corona in GRMHD Simulations of Precessing Tilted Accretion Disks

    Full text link
    In the course of its evolution, a black hole (BH) accretes gas from a wide range of directions. Given a random accretion event, the typical angular momentum of an accretion disc would be tilted by ∼\sim60∘^\circ relative to the BH spin. Misalignment causes the disc to precess at a rate that increases with BH spin and tilt angle. We present the first general-relativistic magnetohydrodynamic (GRMHD) simulations spanning a full precession period of highly tilted (60∘^\circ), moderately thin (h/r=0.1h/r=0.1) accretion discs around a rapidly spinning (a≃0.9a\simeq0.9) BH. While the disc and jets precess in phase, we find that the corona, sandwiched between the two, lags behind by ≳10∘\gtrsim 10^{\circ}. For spectral models of BH accretion, the implication is that hard non-thermal (corona) emission lags behind the softer (disc) emission, thus potentially explaining some properties of the hard energy lags seen in Type-C low frequency quasi-periodic oscillations in X-Ray binaries. While strong jets are unaffected by this disc-corona lag, weak jets stall when encountering the lagging corona at distances r∼100r \sim 100 black hole radii. This interaction may quench large-scale jet formation.Comment: 5 pages, 4 figures, submitted to MNRAS, see YouTube playlist for 3D renderings: https://www.youtube.com/playlist?list=PLDO1oeU33GwmwOV_Hp9s7572JdU8JPSS

    The central parsecs of M87: jet emission and an elusive accretion disc

    Full text link
    We present the first simultaneous spectral energy distribution (SED) of M87 core at a scale of 0.4 arcsec (∼32 pc\sim 32\, \rm{pc}) across the electromagnetic spectrum. Two separate, quiescent, and active states are sampled that are characterized by a similar featureless SED of power-law form, and that are thus remarkably different from that of a canonical active galactic nuclei (AGN) or a radiatively inefficient accretion source. We show that the emission from a jet gives an excellent representation of the core of M87 core covering ten orders of magnitude in frequency for both the active and the quiescent phases. The inferred total jet power is, however, one to two orders of magnitude lower than the jet mechanical power reported in the literature. The maximum luminosity of a thin accretion disc allowed by the data yields an accretion rate of <6×10−5 M⊙ yr−1< 6 \times 10^{-5}\, \rm{M_\odot \, yr^{-1}}, assuming 10% efficiency. This power suffices to explain M87 radiative luminosity at the jet-frame, it is however two to three order of magnitude below that required to account for the jet's kinetic power. The simplest explanation is variability, which requires the core power of M87 to have been two to three orders of magnitude higher in the last 200 yr. Alternatively, an extra source of power may derive from black hole spin. Based on the strict upper limit on the accretion rate, such spin power extraction requires an efficiency an order of magnitude higher than predicted from magnetohydrodynamic simulations, currently in the few hundred per cent range.Comment: 18 pages, 6 figures. Accepted for publication in MNRA

    Radio / X-ray correlation in the low/hard state of GX 339--4

    Get PDF
    We present the results of a long-term study of the black hole candidate GX 339-4 using simultaneous radio (from the Australia Telescope Compact Array) and X-ray (from the Rossi X-ray Timing Explorer and BeppoSAX) observations performed between 1997 and 2000. We find strong evidence for a correlation between these two emission regimes that extends over more than three decades in X-ray flux, down to the quiescence level of GX 339-4. This is the strongest evidence to date for such strong coupling between radio and X-ray emission. We discuss these results in light of a jet model that can explain the radio/X-ray correlation. This could indicate that a significant fraction of the X-ray flux that is observed in the low-hard state of black hole candidates may be due to optically thin synchrotron emission from the compact jet.Comment: 8 pages. Accepted for publication in Astronomy & Astrophysics, 200

    The millimetre variability of M81* -- Multi-epoch dual frequency mm-observations of the nucleus of M81

    Get PDF
    There are still many open questions as to the physical mechanisms at work in Low Luminosity AGN that accrete in the extreme sub-Eddington regime. Simultaneous multi-wavelength studies have been very successful in constraining the properties of SgrA*, the extremely sub-Eddington black hole at the centre of our Milky Way. M81*, the nucleus of the nearby spiral galaxy M81, is an ideal source to extend the insights obtained on SgrA* toward higher luminosity AGN. Here we present observations at 3 and 1 mm that were obtained within the framework of a coordinated,multi-wavelength campaign on M81*. The continuum emission from M81* was observed during three epochs with the IRAM Plateau de Bure Interferometer simultaneously at wavelengths of 3 and 1 mm. We present the first flux measurements of M81* at wavelengths around 1 mm. We find that M81* is a continuously variable source with the higher variability observed at the shorter wavelength. Also, the variability at 3 and 1 mm appears to be correlated. Like SgrA*, M81* appears to display the strongest flux density and variability in the mm-to-submm regime. There remains still some ambiguity concerning the exact location of the turnover frequency from optically thick to optically thin emission. The observed variability time scales point to an upper size limit of the emitting region of the order 25 Schwarzschild radii. The data show that M81* is indeed a system with very similar physical properties to SgrA* and an ideal bridge toward high luminosity AGN. The data obtained clearly demonstrate the usefulness and, above all, the necessity of simultaneous multi-wavelength observations of LLAGN.Comment: accepted for publication in A&
    • …
    corecore