4,689 research outputs found

    Borel Degenerations of Arithmetically Cohen-Macaulay curves in P^3

    Full text link
    We investigate Borel ideals on the Hilbert scheme components of arithmetically Cohen-Macaulay (ACM) codimension two schemes in P^n. We give a basic necessary criterion for a Borel ideal to be on such a component. Then considering ACM curves in P^3 on a quadric we compute in several examples all the Borel ideals on their Hilbert scheme component. Based on this we conjecture which Borel ideals are on such a component, and for a range of Borel ideals we prove that they are on the component.Comment: 20 pages, shorter and more effective versio

    Local-field effects in silicon nanoclusters

    Get PDF
    The effect of the local fields on the absorption spectra of silicon nanoclusters (NCs), freestanding or embedded in SiO2, is investigated in the DFT-RPA framework for different size and amorphization of the samples. We show that local field effects have a great influence on the optical absorption of the NCs. Their effect can be described by two separate contributions, both arising from polarization effects at the NC interface. First, local fields produce a reduction of the absorption that is stronger in the low energy limit. This contribution is a direct consequence of the screening induced by polarization effects on the incoming field. Secondly, local fields cause a blue shift on the main absorption peak that has been explained in terms of perturbation of the absorption resonance conditions. Both contributions do not depend either on the NC diameter nor on its amorphization degree, while showing a high sensitivity to the environment enclosing the NCs

    Insertions Yielding Equivalent Double Occurrence Words

    Full text link
    A double occurrence word (DOW) is a word in which every symbol appears exactly twice; two DOWs are equivalent if one is a symbol-to-symbol image of the other. We consider the so called repeat pattern (αα\alpha\alpha) and the return pattern (ααR\alpha\alpha^R), with gaps allowed between the α\alpha's. These patterns generalize square and palindromic factors of DOWs, respectively. We introduce a notion of inserting repeat/return words into DOWs and study how two distinct insertions into the same word can produce equivalent DOWs. Given a DOW ww, we characterize the structure of ww which allows two distinct insertions to yield equivalent DOWs. This characterization depends on the locations of the insertions and on the length of the inserted repeat/return words and implies that when one inserted word is a repeat word and the other is a return word, then both words must be trivial (i.e., have only one symbol). The characterization also introduces a method to generate families of words recursively

    Resource competition in plant invasions: emerging patterns and research needs

    Get PDF
    Invasions by alien plants provide a unique opportunity to examine competitive interactions among plants. While resource competition has long been regarded as a major mechanism responsible for successful invasions, given a well-known capacity for many invaders to become dominant and reduce plant diversity in the invaded communities, few studies have measured resource competition directly or have assessed its importance relative to that of other mechanisms, at different stages of an invasion process. Here, we review evidence comparing the competitive ability of invasive species vs. that of co-occurring native plants, along a range of environmental gradients, showing that many invasive species have a superior competitive ability over native species, although invasive congeners are not necessarily competitively superior over native congeners, nor are alien dominants are better competitors than native dominants. We discuss how the outcomes of competition depend on a number of factors, such as the heterogeneous distribution of resources, the stage of the invasion process, as well as phenotypic plasticity and evolutionary adaptation, which may result in increased or decreased competitive ability in both invasive and native species. Competitive advantages of invasive species over natives are often transient and only important at the early stages of an invasion process. It remains unclear how important resource competition is relative to other mechanisms (competition avoidance via phenological differences, niche differentiation in space associated with phylogenetic distance, recruitment and dispersal limitation, indirect competition, and allelopathy). Finally, we identify the conceptual and methodological issues characterizing competition studies in plant invasions, and we discuss future research needs, including examination of resource competition dynamics and the impact of global environmental change on competitive interactions between invasive and native species

    Characterization of two new alleles at the goat CSN1S2 locus.

    Get PDF
    Two novel alleles at the goat CSN1S2 locus have been identified: CSN1S2(F) and CSN1S2(D). Sequence analyses revealed that the CSN1S2(F) allele is characterized by a G --> A transition at the 13th nucleotide in exon 3 changing the seventh amino acid of the mature protein from Val to Ile. The CSN1S2(D) allele, apparently associated with a decreased synthesis of alpha s2-casein, is characterized by a 106-bp deletion, involving the last 11 bp of the exon 11 and the first 95 bp of the following intron. Methods (PCR-RFLP and PCR) for identification of carriers of these alleles have been developed

    CTL Model-Checking with Graded Quantifiers

    Get PDF
    The use of the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k, has been thoroughly studied in various kinds of logics. In classical logic there are counting quantifiers, in modal logics graded modalities, in description logics number restrictions. Recently, the complexity issues related to the decidability of the ÎĽ-calculus, when the universal and existential quantifiers are augmented with graded modalities, have been investigated by Kupfermann, Sattler and Vardi. They have shown that this problem is ExpTime-complete. In this paper we consider another extension of modal logic, the Computational Tree Logic CTL, augmented with graded modalities generalizing standard quantifiers and investigate the complexity issues, with respect to the model-checking problem. We consider a system model represented by a pointed Kripke structure and give an algorithm to solve the model-checking problem running in time O() which is hence tight for the problem (where |Ď•| is the number of temporal and boolean operators and does not include the values occurring in the graded modalities). In this framework, the graded modalities express the ability to generate a user-defined number of counterexamples (or evidences) to a specification Ď• given in CTL. However these multiple counterexamples can partially overlap, that is they may share some behavior. We have hence investigated the case when all of them are completely disjoint. In this case we prove that the model-checking problem is both NP-hard and coNP-hard and give an algorithm for solving it running in polynomial space. We have thus studied a fragment of this graded-CTL logic, and have proved that the model-checking problem is solvable in polynomial time

    Technological innovation vs technological backwardness patterns in latecomer firms: An absorptive capacity perspective

    Get PDF
    This study investigates the factors inhibiting latecomer firms’ technological innovation and eventually their catch-up process. Accordingly, it relies on resource-based theory to advance an absorptive capacity argument and develop a multiple mediation model. This model is tested using the data collected from 166 Chinese manufacturing firms. Furthermore, this study provides theoretical arguments and empirical evidence about the role of each dimension of absorptive capacity in studying the catch-up process of latecomer firms, with particular reference to knowledge transformation. It also offers insights into the limitations of predominant latecomer firms’ innovation strategies and suggests shifts in managerial practice and policymaking

    Tomato ionomic approach for food fortification and safety.

    Get PDF
    Food fortification is an issue of paramount of importance for people living both in developed and in developing countries. Among substances listed as "nutriceuticals", essential minerals have been recognised for their involvement in several healthy issues, involving all ages. In this frame, food plants are playing a pivotal role since their capability to compartmentalise ions and proteinmetal complexes in edible organs. Conversely, the accumulation of high metal levels in those organs may lead to safety problems. In the recent years, thanks to the availability of new and improved analytical apparatus in both ionic and genomic/transcrittomics areas, it is became feasible to couple data coming from plant physiology and genetics. Ionomics is the discipline that studies the cross-analysis of both data sets. Our group, in the frame of GenoPom project granted by MiUR, is interested to study the ionomics of tomatoes cultivars derived by breeding programmes in which wild relatives have been used to transfer several useful traits, such as resistance to biotic or abiotic stresses, fruit composition and textiture, etc. The introgression of the wild genome into the cultivated one produces new gene combinations. They might lead to the expression of some traits, such as increased or reduced adsorption of some metals and their exclusion or loading into edible organs, thus strongly involving the nutritional food value. Our final goal is to put together data coming from ions homeostasis and gene expression analyses, thus obtaining an ionomic tomato map related to ions absorption, translocation and accumulation in various plant organs, fruits included. To follow our hypothesis, we are studying the ionome of Solanum lycopersicum cv. M82 along with 76 Introgression Lines (ILs) produced by interspecific crosses between this cultivar and the wild species S. pennellii. These ILs are homozygous for small portions of the wild species genome introgressed into the domesticated M82 one. They are used as a useful tool for mapping QTL associated with many traits of interest. It is worthy to note that, until now, little information is available on QTL for ions accumulation in tomato. Moreover, as our knowledge, effects of new gene combinations in introgressed lines on ions uptake related to food safety have not been extensively studied. In this presentation we show results coming from the ionome analysis, carried out on S . lycopersicum M82 and several ILs. Plants were grown in pots in a greenhouse and watered with deionised water Thirty day-old plants were left to grow for 15 days in the presence of non-toxic concentration of Cd, Pb, As, Cr and Zn given combined. Leaves of all plants were then harvested and stored at -80°C for ionome and gene expression analyses. Preliminary results of ionome analysis of S. lycopersicum M82 and several ILs, carried out using an ICP-MS, showed that traits correlated to toxic metals and micronutrients accumulation in apical leaves were significantly modified in response to specific genetic backgrounds. Those results are perhaps due to the introgression of traits linked to uptake, translocation and accumulation of useful and/or toxic metal into plant apical leaves and to interactions of the wild type introgressed genomic regions with the cultivated genome. Also, data are shown on the identification and isolation of Solanum gene sequences related to ions uptake, translocation and accumulation, useful for further real-time gene expression evaluation in both cultivated and ILs during the treatments with the above-mentioned metals

    Adding Depth to Microplastics

    Get PDF
    The effects and risks of microplastics correlate with three-dimensional (3D) properties, such as the volume and surface area of the biologically accessible fraction of the diverse particle mixtures as they occur in nature. However, these 3D parameters are difficult to estimate because measurement methods for spectroscopic and visible light image analysis yield data in only two dimensions (2D). The best-existing 2D to 3D conversion models require calibration for each new set of particles, which is labor-intensive. Here we introduce a new model that does not require calibration and compare its performance with existing models, including calibration-based ones. For the evaluation, we developed a new method in which the volumes of environmentally relevant microplastic mixtures are estimated in one go instead of on a cumbersome particle-by-particle basis. With this, the new Barchiesi model can be seen as the most universal. The new model can be implemented in software used for the analysis of infrared spectroscopy and visual light image analysis data and is expected to increase the accuracy of risk assessments based on particle volumes and surface areas as toxicologically relevant metrics
    • …
    corecore