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We introduce two-level discounted games played by two players on a perfect-information stochastic
game graph. The upper level game is a discounted game and the lower level game is an undiscounted
reachability game. Two-level games model hierarchical andsequential decision making under uncer-
tainty across different time scales. We show the existence of pure memoryless optimal strategies for
both players and an ordered field property for such games. We show that if there is only one player
(Markov decision processes), then the values can be computed in polynomial time. It follows that
whether the value of a player is equal to a given rational constant in two-level discounted games can
be decided in NP∩ coNP. We also give an alternate strategy improvement algorithm to compute the
value.

1 Introduction

Discrete stochastic games have been extensively studied asmodels for decision making under adversarial
interactions in an uncertain environment, and have found many applications, such as in manufacturing
systems control and inventory management [4].

In many such applications, the interaction with the environment occurs in a hierarchical manner,
intercalated across different time scales. In the short-term, a decision has to be made about choosing
one of several possible actions. For example, short term decisions can determine whether to buy a
certain product or another, or whether to increase or decrease production capacity. In the long-term, the
system gets a profit or a loss at each step based on its existinginventory. Both short-term and long-term
decisions can potentially involve uncertainty and adversarial interactions. Moreover, long term decisions
are influenced by the short term actions chosen, and model theeffect of the local decisions on the overall
profits or losses of the system.

Technically, the two types of interaction are modeled usingtwo distinct classes of games. Undis-
countedreachability gamesare used to model short-term decision making (e.g., what action to take
next). In a reachability game on a state space, one fixes a set of goal states, and the objective of player 1
is to maximize the probability of reaching the goal states.

On the other hand,discounted reward gamesmodel long-term rewards for the system (e.g., how the
actions chosen locally relate to long-term profits). In a discounted game, player 1 gets a reward in each
step, and a time discount parameterλ ∈ (0,1) is used to “discount” the reward at future time points (i.e.,
the rewardr obtainedt time units in the future is given a valueλ tr). The short-term interactions are
abstracted away into an atomic step that uniformly sets the time granularity. The objective of player 1 is
to maximize the expected normalized sum of discounted rewards.

To make the games concrete, consider economic policymakerssetting financial policy. The specific
policy implemented (e.g., the interest rate or the amount ofregulation) affects the long-term health of the
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economy, and the interplay between financial policy and the market can be modeled using discounted
rewards. However, in each step, the specific policy chosen depends on “short-term” games between
various stakeholders, such as politicians, the treasury, companies, and various interest groups. In this
setting, the time granularity of long-term steps (policy implementation) is variable, and depends on the
length and outcome of the short-term steps (deciding which policy to implement).

While each game model in itself provides a sound theoreticalbasis for reasoning about system be-
havior, the hierarchical interaction and varying time granularities (short-term vs. long-term) present in
many applications is not adequately captured by either model. In this paper, we introduce models for
such multi-level interactions and algorithms for sequential decision making in a setting where the time
granularity can be variable. We define atwo-leveldiscounted game, in which a “lower level” reachability
game is used to decide actions for a “higher level” discounted game. The discount factor is applied to the
time scale of the higher-level game, not for every step that elapses in the lower-level game. Since every
lower level game is different we obtain complete independence in granularity of transitions.

Our main result is the existence of value and pure memorylessstrategies in two-level discounted
games. Moreover, we show that the value and optimal strategies can be computed in polynomial time
for Markov decision processes, and the complexity of checking if the value is equal to a rational is in
NP∩ co-NP for 21

2-player two-level discounted games. Two-level discountedgames subsume classical
discounted games, and our complexity bounds match the best known results for classical discounted
games.

Technically, we combine the existence of pure memoryless strategies in discounted games [7] with
the existence of pure memoryless strategies in (undiscounted) 21

2-player reachability games [5, 4, 6] to-
gether with a reduction from two-level games to a one-level discounted game. In particular, we show that
for Markov decision processes, we can formulate the value ata state as a linear programming problem
over the states of the two-level game. Thus, the games have anordered field property: if all constants
in the definition of the game come from a fieldF, then the value is also inF ; in particular, games with
rational probabilities and rational discount factors havea rational value. Together with the existence of
pure memoryless strategies, this implies that the decisionproblem to check if the value is equal to a
given rational is in NP∩ co-NP. We also give a strategy improvement algorithm to compute the value,
by combining strategy improvement algorithms for stochastic reachability [2] and discounted games [4].

Thus our new model of stochastic games provides a uniform framework for decision making across
different time scales, and our algorithms show how to decideoptimally in such a framework.

2 Definitions

We consider several classes of turn-based games: two-player turn-based probabilistic games (21/2-player
games), two-player turn-based deterministic games (2-player games), and Markov decision processes
(11/2-player games).

Notation. For a finite setA, a probability distribution on A is a functionδ : A → [0,1] such that
∑a∈A δ (a) = 1. We denote the set of probability distributions onA by D(A). Given a distribution
δ ∈ D(A), we denote by Supp(δ ) = {x∈ A | δ (x)> 0} thesupportof δ .

Game graphs. A turn-based probabilistic game graph(21/2-player game graph) G =
((S,E),(S1,S2,SP),δ ) consists of a directed graph(S,E), a partition(S1, S2, SP) of the finite setS of
states, and a probabilistic transition functionδ : SP → D(S), whereD(S) denotes the set of probability
distributions over the state spaceS. The states inS1 are theplayer-1 states, where player 1 decides the
successor state; the states inS2 are theplayer-2 states, where player 2 decides the successor state; and the



24 Discounting in Games across Time Scales

states inSP are theprobabilisticstates, where the successor state is chosen according to theprobabilistic
transition functionδ . We assume that fors∈ SP andt ∈ S, we have(s, t) ∈ E iff δ (s)(t) > 0, and we
often writeδ (s, t) for δ (s)(t). For technical convenience we assume that every state in thegraph(S,E)
has at least one outgoing edge. For a states∈ S, we writeE(s) to denote the set{t ∈ S| (s, t) ∈ E} of
possible successors. The size of a game graphG= ((S,E),(S1,S2,SP),δ ) is

|G|= |S|+ |E|+∑
t∈S

∑
s∈SP

|δ (s)(t)|;

where|δ (s)(t)| denotes the space to represent the transition probabilityδ (s)(t) in binary.
The turn-based deterministic game graphs(2-player game graphs) are the special case of the 21/2-

player game graphs withSP = /0. TheMarkov decision processes(11/2-player game graphs) are the
special case of the 21/2-player game graphs withS1 = /0 or S2 = /0. We refer to the MDPs withS2 = /0 as
player-1 MDPs, and to the MDPs withS1 = /0 asplayer-2 MDPs.

Plays and strategies. An infinite path, orplay, of the game graphG is an infinite sequenceω =
〈s0,s1,s2, . . .〉 of states such that(sk,sk+1) ∈ E for all k ∈ N. We write Ω for the set of all plays, and
for a states∈ S, we writeΩs ⊆ Ω for the set of plays that start from the states.

A strategyfor player 1 is a functionσ : S∗ ·S1 → D(S) that assigns a probability distribution to all
finite sequences~w ∈ S∗ ·S1 of states ending in a player-1 state (the sequence represents a prefix of a
play). Player 1 follows the strategyσ if in each player-1 move, given that the current history of the
game is~w∈ S∗ ·S1, she chooses the next state according to the probability distribution σ(~w). A strategy
must prescribe only available moves, i.e., for all~w∈ S∗, ands∈ S1 we have Supp(σ(~w·s)) ⊆ E(s). The
strategies for player 2 are defined analogously. We denote byΣ andΠ the set of all strategies for player 1
and player 2, respectively.

Once a starting states∈ Sand strategiesσ ∈ Σ andπ ∈ Π for the two players are fixed, the outcome
of the game is a random walkωσ ,π

s for which the probabilities of events are uniquely defined, where an
eventA ⊆ Ω is a measurable set of paths. For a states∈ S and an eventA ⊆ Ω, we write Prσ ,π

s (A )
for the probability that a path belongs toA if the game starts from the states and the players follow the
strategiesσ andπ, respectively. Similarly we denote byEσ ,π

s (·) the expectation under the probability
measure Prσ ,π

s (·). In the context of player-1 MDPs we often omit the argumentπ, becauseΠ is a
singleton set.

We classify strategies according to their use of randomization and memory. Strategies that do not use
randomization are called pure; formally, a player-1 strategy σ is pure if for all ~w∈ S∗ ands∈ S1, there
is a statet ∈ Ssuch thatσ(~w ·s)(t) = 1. We denote byΣP ⊆ Σ the set of pure strategies for player 1. In
order to emphasize the potential use of randomization, we call a (general) strategyrandomized. Let M
be a set calledmemory, that is,M is a set of memory elements. A player-1 strategyσ can be described
as a pair of functionsσ = (σu,σm): a memory-updatefunction σu: S×M→ M and anext-movefunction
σm: S1 × M→ D(S). We can think of strategies with memory as input/output automata computing the
strategies (see [3] for details). A strategyσ = (σu,σm) is finite-memoryif the memoryM is finite, and then
the size of the strategyσ , denoted as|σ |, is the size of its memoryM, i.e.,|σ |= |M|. We denote byΣF the
set of finite-memory strategies for player 1, and byΣPF the set ofpure finite-memorystrategies; that is,
ΣPF = ΣP∩ΣF . The strategy(σu,σm) is memorylessif |M|= 1; that is, the next move does not depend on
the history of the play but only on the current state. A memoryless player-1 strategy can be represented
as a functionσ : S1 → D(S). A pure memoryless strategyis a pure strategy that is memoryless. A pure
memoryless strategy for player 1 can be represented as a function σ : S1 → S. We denote byΣM the
set of memoryless strategies for player 1, and byΣPM the set of pure memoryless strategies; that is,
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ΣPM = ΣP∩ΣM. Analogously we define the corresponding strategy familiesΠP, ΠF, ΠPF, ΠM, andΠPM

for player 2.

Two-level discounted games.A two-level discounted gameconsists of a turn-based probabilistic game
graphG; a partion of the state spaceS into (Su,Sl ) the setSu of upper level states and the setSl of
lower level states; and a reward functionr : Su → R>0 that maps every upper level state to a positive
real-valued reward. We also require that from every states∈ Sl player 1 can ensure to reach a state inSu

with probability 1. In other words, for alls∈ Sl , there exists a player 1 strategyσ such that against all
player 2 strategiesπ we have Prσ ,π

s (Reach(Su)) = 1, where Reach(Su) is the set of paths that visit a state
in Su.

Discounted objectives.An objective f is a measurable functionf : Ω → R that assigns to every path
a real-valued payoff. Thediscounted objectivein two-level discounted games is a measurable function
TwoDisc :Ω → R defined as follows: for 0< β < 1, consider a pathω = 〈s0,s1,s2, . . .〉 and for an index
i ≥ 0, let

α(i) =

{

0 si ∈ Sl ;

β k · r(si) si ∈ Su and the number ofSu states in〈s0, . . . ,si−1〉 is k−1;

then

TwoDisc(ω) = (1−β ) ·
∞

∑
i=0

α(i).

In other words, the payoff of a path is the normalized discounted sum of the rewards of the path and the
discounting is applied for every upper level state.

Optimal strategies. Given objectivesf and− f for player 1 and player 2, respectively, we define the
valuefunctions〈〈1〉〉val and〈〈2〉〉val for the players 1 and 2, respectively, as the following functions from
the state spaceS to the setR of reals: for all statess∈ S, let

〈〈1〉〉val( f )(s) = sup
σ∈Σ

inf
π∈Π

E
σ ,π
s [ f ]; 〈〈2〉〉val(− f )(s) = sup

π∈Π
inf
σ∈Σ

E
σ ,π
s [− f ].

In other words, the value〈〈1〉〉val( f )(s) gives the maximal expectation with which player 1 can achieve
her objective f from states, and analogously for player 2. The strategies that achieve the value are
called optimal: a strategyσ for player 1 isoptimal from the states for the objectivef if 〈〈1〉〉val( f )(s) =
infπ∈Π E

σ ,π
s [ f ]. The optimal strategies for player 2 are defined analogously. We now state the classical

determinacy results for 21/2-player games with measurable objectives.

Theorem 1 (Quantitative determinacy [6]) For all 21/2-player game graphs G =
((S,E),(S1,S2,SP),δ ) and for all measurable functions f , we have〈〈1〉〉val( f )(s)+ 〈〈2〉〉val(− f )(s) = 0
for all states s∈ S.

The determinacy result follows for two-level discounted games. In the following section we will
study the complexity of optimal strategies and the computational complexity of solving two-level dis-
counted games. We first recall a result about the classical discounted games. The classical discounted
games are special cases of two-level discounted games such thatSl = /0; i.e., the game consists of only
upper level states. We refer to this class of games asone-leveldiscounted games.

Theorem 2 (Memoryless determinacy of one-level discountedgames [4]) For all 21/2-player one-
level discounted games, pure memoryless optimal strategies exist for both players.
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3 Strategy and Computational Complexity

We first show that pure memoryless optimal strategies exist in two-level discounted games. We first
present a special class of two-level discounted games and reduce it to one-level discounted games.

One-step two-level discounted games.The class of one-step two-level discounted games are the special
case of two-level discounted games such that the following restrictions are satisfied: (a)Sl ⊆ SP (i.e.,
every lower level state is a probabilistic state); and (b)E∩Sl ×S⊆Sl ×Su (i.e., every successor of a state
in Sl is a state inSu). In other words, in one-step two-level discounted games from any lower level state
the upper level states are reached in one step with probability 1. An one-step two-level discounted game
can be reduced to one-level discounted games as follows. We convert every state inSl to a state inSu;
and the reward function is modified as follows: we add rewardsto the states inSl to take care of the extra
discounting step for converting a state inSl to a state inSu, i.e., for a states∈ Sl its reward is assigned as

r(s) = (1−β ) ·∑
t∈S

r(t) ·δ (s)(t).

Since we can reduce one-step two-level discounted games to one-level discounted games, the existence
of pure memoryless optimal strategies in one-step two-level discounted games follows.

Theorem 3 Pure memoryless optimal strategies exist for both players in two-level discounted games.

Proof. To prove the results we will use the existence of pure memoryless optimal strategies in reachabil-
ity games, and present a reduction to one-step two-level discounted games.

First, for states inSl we consider a reachability game as follows: once the game reaches a state
s∈ Su, then player 1 receives the payoff〈〈1〉〉val(TwoDisc)(s) and the game stops. The goal of player 1 is
to maximize the payoff. Since this game is a reachability game, from the existence of pure memoryless
optimal strategies in turn-based probabilistic reachability games [1], it follows that pure memoryless
optimal strategiesσ ∗ andπ∗ exist for both players in this game. Since the reward function is positive,
it follows that〈〈1〉〉val(TwoDisc)(s) > 0 for all s∈ Su. Since in two-level discounted games player 1 can
ensure to reachSu with probability 1, it follows that onceσ ∗ andπ∗ are fixed from all states inSl states
in Su are reached with probability 1. LetT denote the random time when the game first reaches a state in
Su, andΘT denote the random variable for theT-th state. The strategiesσ ∗ andπ∗ ensure the following:

1. for all strategiesπ and for all statess∈ Sl we have

〈〈1〉〉val(TwoDisc)(s)≥ ∑
t∈Su

Prσ
∗,π

s (ΘT = t) · 〈〈1〉〉val(TwoDisc(t));

2. for all strategiesσ and for all statess∈ Sl we have

〈〈1〉〉val(TwoDisc)(s)≤ ∑
t∈Su

Prσ ,π∗

s (ΘT = t) · 〈〈1〉〉val(TwoDisc(t));

and

3. Prσ
∗,π∗

s (T < ∞) = 1 and〈〈1〉〉val(TwoDisc)(s) = ∑t∈Su
Prσ

∗,π∗

s (ΘT = t) · 〈〈1〉〉val(TwoDisc(t)).

We now present a reduction from two-level discounted games to one-step two-level discounted games.
We replace each states∈ Sl as a probabilistic state such that froms the successor state distribution is as
follows: δ (s)(t) = Prσ

∗,π∗

s (Reach(t)) for t ∈ Su. The following assertions hold in the one-step two-level
discounted game for states inSu:
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1. for all statess∈ S1∩Su, we have

〈〈1〉〉val(TwoDisc)(s) = max
t∈E(s)

β · r(s)+ (1−β ) · 〈〈1〉〉val(TwoDisc(t));

2. for all statess∈ S2∩Su, we have

〈〈1〉〉val(TwoDisc)(s) = min
t∈E(s)

β · r(s)+ (1−β ) · 〈〈1〉〉val(TwoDisc(t));

and

3. for all statess∈ SP∩Su, we have

〈〈1〉〉val(TwoDisc)(s) = β · r(s)+ (1−β ) ·∑
t∈S

δ (s)(t) · 〈〈1〉〉val(TwoDisc(t)).

The following assertions hold in the one-step two-level discounted game for states inSl :

1. for all statess∈ S1∩Sl , we have〈〈1〉〉val(TwoDisc)(s) = maxt∈E(s)〈〈1〉〉val(TwoDisc(t));

2. for all statess∈ S2∩Su we have〈〈1〉〉val(TwoDisc)(s) = mint∈E(s)〈〈1〉〉val(TwoDisc(t)); and

3. for all statess∈ SP∩Su, we have〈〈1〉〉val(TwoDisc)(s) = ∑t∈Sδ (s)(t) · 〈〈1〉〉val(TwoDisc(t)).

From the above inequalities, the classical correctness proof for one-level discounted games, and the re-
duction of one-step two-level discounted games to one-level discounted games, it follows that the values
in the original game and the reduced one-step two-level discounted games coincide. The combination
of the pure memoryless optimal strategy in the discounted game obtained after reduction, and the pure
memoryless optimal strategy in the reachability game is a witness optimal strategy in the two-level dis-
counted game. Hence the result follows.

Solution for two-level discounted MDPs. The existence of pure memoryless optimal strategies for
two-level discounted games is proved by combining the solution of a reachability game and one-level
discounted games. The result for MDPs follows as a special case. The value function for MDPs can be
obtained from the solution of a linear programming problem which combines the linear programming
solution for MDPs with reachability and one-level discounted objectives. The linear program for player-1
MDPs is as follows: the objective function is mins∈Sxs subject to the following constraints

xs ≥ xt s∈ Sl ∩S1;(s, t) ∈ E;

xs = ∑t∈Sδ (s)(t) ·xt s∈ Sl ∩SP;

xs ≥ β · r(s)+ (1−β ) ·xt s∈ Su∩S1;(s, t) ∈ E;

xs = β · r(s)+ (1−β ) ·∑t∈Sδ (s)(t) ·xt s∈ Sl ∩SP;

The solution for player-2 MDPs is similar. This gives us the following result.

Theorem 4 Given a two-level discounted game on a player-1 MDP or a player-2 MDP, the value at all
states can be computed in polynomial time.

A class of discounted games has theordered field propertyif for every game TwoDisc in the class
with rewards, transition probabilities, and discount factors chosen from a fieldF, we have that the value
〈〈1〉〉val(TwoDisc)(s) is also inF for each states.
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Corollary 1 (Ordered field property) Given a two-level discounted game, if the rewards, discountfac-
tor, and transition probabilities are rational, then the value at evey state is rational. The class of all
two-level discounted games have the ordered field property.

Proof. The results follows from the existence of pure memoryless optimal strategies and the existence
of linear program that characterizes the values on MDPs. Once a pure memoryless optimal strategy is
fixed we have an MDP, and by the linear program characterizingthe value for MDPs it follows that if the
rewards, discount factor and transition probabilities arerational, then the value at every state is rational.
The ordered field property follows from similar arguments.

Complexity of two-level discounted games.Since pure memoryless optimal strategies exist for both
players in two-level discounted games, and MDPs with two-level discounted objectives can be solved
in polynomial time, it follows that the decision problem forthe value function in two-level discounted
games can be solved in NP∩ coNP. Hence we have the following result.

Theorem 5 Given a two-level discounted game, a rational number q, a state s, and⊲⊳∈ {≥,>,≤,<,=},
whether〈〈1〉〉val(TwoDisc)(s) ⊲⊳ q can be decided in NP∩ coNP.

Algorithm for computing values. The existence of pure memoryless strategies ensure the correctness
of the following naive algorithm to compute the values in two-level discounted game: (a) enumerate
all pure memoryless strategies, and for each pure memoryless strategy compute the value for the MDP
obtained by fixing the strategy (using the linear program), and (b) choose the value of the best pure
memoryless strategy. The above algorithm is an exhaustive search on the set of pure memoryless strate-
gies. We now describe an efficient search on the set of pure memoryless strategies given as a strategy
improvement algorithm for two-level discounted games. Thestrategy improvement algorithm combines
in a hierarchical fashion two classical strategy improvement algorithms: (a) the strategy improvement al-
gorithm for stochastic games with discounted objectives [4] and (b) the strategy improvement algorithm
for stochastic reachability games [2].

The strategy improvement algorithm is as follows: (a) fix a pure memoryless strategy at the upper-
level states; (b) apply the strategy improvement algorithmfor reachability games for the lower-level
reachability game to compute values given the strategy thatis fixed in the higher-level game; and (c) once
the values are computed, apply the strategy improvement step for discounted games to improve the
upper-level strategy. The algorithm stops when no improvement is possible and obtains a pure memo-
ryless optimal strategy. This gives us a strategy improvement algorithm to compute values in two-level
discounted games.

4 Conclusion

We have introduced a new model of stochastic games that provide a uniform framework for decision
making across different time scales. We have shown that purememoryless optimal strategies exists in
these games. Our framework subsumes classical discounted games, and provides a natural extension
in which discounting is applied at different time granularities. We show that in our framework the
solution for MDPs can be achieved in polynomial time matching the best known bound of MDPs with
discounted objectives. For two-level turn-based stochastic games we show that whether the value is equal
to a rational can be decided in NP∩ coNP, matching the best known complexity bound for discounted
stochastic games.
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