1,459 research outputs found

    Chemical modeling of the L1498 and L1517B prestellar cores: CO and HCO+ depletion

    Full text link
    Prestellar cores exhibit a strong chemical differentiation, which is mainly caused by the freeze-out of molecules onto the grain surfaces. Understanding this chemical structure is important, because molecular lines are often used as probes to constrain the core physical properties. Here we present new observations and analysis of the C18O (1-0) and H13CO+ (1-0) line emission in the L1498 and L1517B prestellar cores, located in the Taurus-Auriga molecular complex. We model these observations with a detailed chemistry network coupled to a radiative transfer code. Our model successfully reproduces the observed C18O (1-0) emission for a chemical age of a few 10^5 years. On the other hand, the observed H13CO+ (1-0) is reproduced only if cosmic-ray desorption by secondary photons is included, and if the grains have grown to a bigger size than average ISM grains in the core interior. This grain growth is consistent with the infrared scattered light ("coreshine") detected in these two objects, and is found to increase the CO abundance in the core interior by about a factor four. According to our model, CO is depleted by about 2-3 orders of magnitude in the core center.Comment: Accepted for publication in A&

    Star Formation and Substructure in Galaxy Clusters

    Get PDF
    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.Comment: 10 pages, 6 figures, accepted for publication in Ap

    Using Chemistry to Unveil the Kinematics of Starless Cores: Complex Radial Motions in Barnard 68

    Full text link
    We present observations of 13CO, C18O, HCO+, H13CO+, DCO+ and N2H+ line emission towards the Barnard 68 starless core. The line profiles are interpreted using a chemical network coupled with a radiative transfer code in order to reconstruct the radial velocity profile of the core. Our observations and modeling indicate the presence of complex radial motions, with the inward motions in the outer layers of the core but outward motions in the inner part, suggesting radial oscillations. The presence of such oscillation would imply that B68 is relatively old, typically one order of magnitude older than the age inferred from its chemical evolution and statistical core lifetimes. Our study demonstrates that chemistry can be used as a tool to constrain the radial velocity profiles of starless cores.Comment: 12 pages, 3 figures, to appear in the Astrophysical Journal Letter

    First results from the CALYPSO IRAM-PdBI survey. I. Kinematics of the inner envelope of NGC1333-IRAS2A

    Full text link
    The structure and kinematics of Class 0 protostars on scales of a few hundred AU is poorly known. Recent observations have revealed the presence of Keplerian disks with a diameter of 150-180 AU in L1527-IRS and VLA1623A, but it is not clear if such disks are common in Class 0 protostars. Here we present high-angular-resolution observations of two methanol lines in NGC1333-IRAS2A. We argue that these lines probe the inner envelope, and we use them to study the kinematics of this region. Our observations suggest the presence of a marginal velocity gradient normal to the direction of the outflow. However, the position velocity diagrams along the gradient direction appear inconsistent with a Keplerian disk. Instead, we suggest that the emission originates from the infalling and perhaps slowly rotating envelope, around a central protostar of 0.1-0.2 M_\odot. If a disk is present, it is smaller than the disk of L1527-IRS, perhaps suggesting that NGC1333-IRAS2A is younger.Comment: Accepted for publication in A&A letter

    Observation of the critical regime near Anderson localization of light

    Full text link
    Diffusive transport is among the most common phenomena in nature [1]. However, as predicted by Anderson [2], diffusion may break down due to interference. This transition from diffusive transport to localization of waves should occur for any type of classical or quantum wave in any media as long as the wavelength becomes comparable to the transport mean free path \ell^* [3]. The signatures of localization and those of absorption, or bound states, can however be similar, such that an unequivocal proof of the existence of wave localization in disordered bulk materials is still lacking. Here we present measurements of time resolved non-classical diffusion of visible light in strongly scattering samples, which cannot be explained by absorption, sample geometry or reduction in transport velocity. Deviations from classical diffusion increase strongly with decreasing \ell^* as expected for a phase transition. This constitutes an experimental realization of the critical regime in the approach to Anderson localization.Comment: 5 pages, 4 figure

    Frank's constant in the hexatic phase

    Full text link
    Using video-microscopy data of a two-dimensional colloidal system the bond-order correlation function G6 is calculated and used to determine the temperature-dependence of both the orientational correlation length xi6 in the isotropic liquid phase and the Frank constant F_A in the hexatic phase. F_A takes the value 72/pi at the hexatic to isotropic liquid phase transition and diverges at the hexatic to crystal transition as predicted by the KTHNY-theory. This is a quantitative test of the mechanism of breaking the orientational symmetry by disclination unbinding

    Non-collinear magnetism in Al-Mn topologically disordered systems

    Full text link
    We have performed the first ab-initio calculations of a possible complex non-collinear magnetic structure in aluminium-rich Al-Mn liquids within the real-space tight-binding LMTO method. In our previous work we predicted the existence of large magnetic moments in Al-Mn liquids [A.M. Bratkovsky, A.V. Smirnov, D. N. Manh, and A. Pasturel, \prb {\bf 52}, 3056 (1995)] which has been very recently confirmed experimentally. Our present calculations show that there is a strong tendency for the moments on Mn to have a non-collinear (random) order retaining their large value of about 3~μB\mu_B. The d-electrons on Mn demonstrate a pronounced non-rigid band behaviour which cannot be reproduced within a simple Stoner picture. The origin of the magnetism in these systems is a topological disorder which drives the moments formation and frustrates their directions in the liquid phase.Comment: 10 pages, RevTex 3.0, 24kb. 3 PS figures available on request from [email protected] The work has been presented at ERC ``Electronic Structire of Solids'' (Lunteren, The Netherlands, 9-14 September 1995

    First results from the CALYPSO IRAM-PdBI survey - III. Monopolar jets driven by a proto-binary system in NGC1333-IRAS2A

    Get PDF
    Context: The earliest evolutionary stages of low-mass protostars are characterised by hot and fast jets which remove angular momentum from the circumstellar disk, thus allowing mass accretion onto the central object. However, the launch mechanism is still being debated. Aims: We would like to exploit high-angular (~ 0.8") resolution and high-sensitivity images to investigate the origin of protostellar jets using typical molecular tracers of shocked regions, such as SiO and SO. Methods: We mapped the inner 22" of the NGC1333-IRAS2A protostar in SiO(5-4), SO(65-54), and the continuum emission at 1.4 mm using the IRAM Plateau de Bure interferometer in the framework of the CALYPSO IRAM large program. Results: For the first time, we disentangle the NGC1333-IRAS2A Class 0 object into a proto-binary system revealing two protostars (MM1, MM2) separated by ~ 560 AU, each of them driving their own jet, while past work considered a single protostar with a quadrupolar outflow. We reveal (i) a clumpy, fast (up to |V-VLSR| > 50 km/s), and blueshifted jet emerging from the brightest MM1 source, and (ii) a slower redshifted jet, driven by MM2. Silicon monoxide emission is a powerful tracer of high-excitation (Tkin > 100 K; n(H2) > 10^5 cm-3) jets close to the launching region. At the highest velocities, SO appears to mimic SiO tracing the jets, whereas at velocities close to the systemic one, SO is dominated by extended emission, tracing the cavity opened by the jet. Conclusions: Both jets are intrinsically monopolar, and intermittent in time. The dynamical time of the SiO clumps is < 30-90 yr, indicating that one-sided ejections from protostars can take place on these timescales.Comment: Astronomy & Astrophysics Letter, in pres
    corecore