89 research outputs found

    Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping

    Full text link
    A combination of analytical approaches and quantum Monte Carlo simulations is used to study both magnetic and pairing correlations for a version of the Hubbard model that includes second-neighbor hopping t=0.35tt^{\prime }=-0.35t as a model for high-temperature superconductors. Magnetic properties are analyzed using the Two-Particle Self-Consistent approach. The maximum in magnetic susceptibility as a function of doping appears both at finite % t^{\prime } and at t=0t^{\prime }=0 but for two totally different physical reasons. When t=0t^{\prime }=0, it is induced by antiferromagnetic correlations while at t=0.35tt^{\prime }=-0.35t it is a band structure effect amplified by interactions. Finally, pairing fluctuations are compared with % T -matrix results to disentangle the effects of van Hove singularity and of nesting on superconducting correlations. The addition of antiferromagnetic fluctuations increases slightly the dd-wave superconducting correlations despite the presence of a van Hove singularity which tends to decrease them in the repulsive model. Some aspects of the phase diagram and some subtleties of finite-size scaling in Monte Carlo simulations, such as inverted finite-size dependence, are also discussed.Comment: Revtex, 8 pages + 15 uuencoded postcript figure

    Field Theory And Second Renormalization Group For Multifractals In Percolation

    Full text link
    The field-theory for multifractals in percolation is reformulated in such a way that multifractal exponents clearly appear as eigenvalues of a second renormalization group. The first renormalization group describes geometrical properties of percolation clusters, while the second-one describes electrical properties, including noise cumulants. In this context, multifractal exponents are associated with symmetry-breaking fields in replica space. This provides an explanation for their observability. It is suggested that multifractal exponents are ''dominant'' instead of ''relevant'' since there exists an arbitrary scale factor which can change their sign from positive to negative without changing the Physics of the problem.Comment: RevTex, 10 page

    Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards quantitative theory (Review Article)

    No full text
    This is a short review of the theoretical work on the two-dimensional Hubbard model performed in Sherbrooke in the last few years. It is written on the occasion of the twentieth anniversary of the discovery of high-temperature superconductivity. We discuss several approaches, how they were benchmarked and how they agree sufficiently with each other that we can trust that the results are accurate solutions of the Hubbard model. Then comparisons are made with experiment. We show that the Hubbard model does exhibit d-wave superconductivity and antiferromagnetism essentially where they are observed for both hole and electron-doped cuprates. We also show that the pseudogap phenomenon comes out of these calculations. In the case of electron-doped high temperature superconductors, comparisons with angle-resolved photoemission experiments are nearly quantitative. The value of the pseudogap temperature observed for these compounds in recent photoemission experiments has been predicted by theory before it was observed experimentally. Additional experimental confirmation would be useful. The theoretical methods that are surveyed include mostly the two-particle self-consistent approach, variational cluster perturbation theory (or variational cluster approximation), and cellular dynamical meanfield theory

    Shear-induced quench of long-range correlations in a liquid mixture

    Full text link
    A static correlation function of concentration fluctuations in a (dilute) binary liquid mixture subjected to both a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrodynamics. It is shown that a well-known c2/k4|\nabla c|^2/k^4 long-range correlation at large wave numbers kk crosses over to a weaker divergent one for wave numbers satisfying k<(γ˙/D)1/2k<(\dot{\gamma}/D)^{1/2}, while an asymptotic shear-controlled power-law dependence is confirmed at much smaller wave numbers given by k(γ˙/ν)1/2k\ll (\dot{\gamma}/\nu)^{1/2}, where cc, γ˙\dot{\gamma}, DD and ν\nu are the mass concentration, the rate of the shear, the mass diffusivity and the kinematic viscosity of the mixture, respectively. The result will provide for the first time the possibility to observe the shear-induced suppression of a long-range correlation experimentally by using, for example, a low-angle light scattering technique.Comment: 8pages, 2figure

    Long-Ranged Correlations in Sheared Fluids

    Full text link
    The presence of long-ranged correlations in a fluid undergoing uniform shear flow is investigated. An exact relation between the density autocorrelation function and the density-mometum correlation function implies that the former must decay more rapidly than 1/r1/r, in contrast to predictions of simple mode coupling theory. Analytic and numerical evaluation of a non-perturbative mode-coupling model confirms a crossover from 1/r1/r behavior at ''small'' rr to a stronger asymptotic power-law decay. The characteristic length scale is λ0/a\ell \approx \sqrt{\lambda_{0}/a} where % \lambda_{0} is the sound damping constant and aa is the shear rate.Comment: 15 pages, 2 figures. Submitted to PR

    Higher Order Effects in the Dielectric Constant of Percolative Metal-Insulator Systems above the Critical Point

    Full text link
    The dielectric constant of a conductor-insulator mixture shows a pronounced maximum above the critical volume concentration. Further experimental evidence is presented as well as a theoretical consideration based on a phenomenological equation. Explicit expressions are given for the position of the maximum in terms of scaling parameters and the (complex) conductances of the conductor and insulator. In order to fit some of the data, a volume fraction dependent expression for the conductivity of the more highly conductive component is introduced.Comment: 4 pages, Latex, 4 postscript (*.epsi) files submitted to Phys Rev.

    A 5 ̊C Arctic in a 2 ̊C World

    Get PDF
    The Columbia Climate Center, in partnership with World Wildlife Fund, Woods Hole Research Center, and Arctic 21, held a workshop titled A 5 C Arctic in a 2 C World on July 20 and 21, 2016. The workshop was co-sponsored by the International Arctic Research Center (University of Alaska Fairbanks), the Arctic Institute of North America (Canada), the MEOPAR Network (Marine Environmental Observation, Prediction, and Response), and the Future Ocean Excellence Cluster. The goal of the workshop was to advance thinking on the science and policy implications of the temperature change in the context of the 1.5 to 2 C warming expected for the globe, as dis- cussed during the 21st session of the Conference of the Parties of the United Nations Framework Convention on Climate Change at Paris in 2015. For the Arctic, such an increase means an antic- ipated increase of roughly 3.5 to 5 C. An international group of 41 experts shared perspectives on the regional and global impacts of an up to +5 C Arctic, examined the feasibility of actively lowering Arctic temperatures, and considered realistic timescales associated with such interventions. The group also discussed the science and the political and governance actions required for alternative Arctic futures

    Accelerometer Measured Levels of Moderate-to-Vigorous Intensity Physical Activity and Sedentary Time in Children and Adolescents with Chronic Disease: a Systematic Review and Meta-Analysis

    Get PDF
    Context: Moderate-to-vigorous physical activity (MVPA) and sedentary time (ST) are important for child and adolescent health. Objective: To examine habitual levels of accelerometer measured MVPA and ST in children and adolescents with chronic disease, and how these levels compare with healthy peers. Methods: Data sources: An extensive search was carried out in Medline, Cochrane library, EMBASE, SPORTDiscus and CINAHL from 2000–2017. Study selection: Studies with accelerometer-measured MVPA and/or ST (at least 3 days and 6 hours/day to provide estimates of habitual levels) in children 0–19 years of age with chronic diseases but without co-morbidities that would present major impediments to physical activity. In all cases patients were studied while well and clinically stable. Results: Out of 1592 records, 25 studies were eligible, in four chronic disease categories: cardiovascular disease (7 studies), respiratory disease (7 studies), diabetes (8 studies), and malignancy (3 studies). Patient MVPA was generally below the recommended 60 min/day and ST generally high regardless of the disease condition. Comparison with healthy controls suggested no marked differences in MVPA between controls and patients with cardiovascular disease (1 study, n = 42) and type 1 diabetes (5 studies, n = 400; SMD -0.70, 95% CI -1.89 to 0.48, p = 0.25). In patients with respiratory disease, MVPA was lower in patients than controls (4 studies, n = 470; SMD -0.39, 95% CI -0.80, 0.02, p = 0.06). Meta-analysis indicated significantly lower MVPA in patients with malignancies than in the controls (2 studies, n = 90; SMD -2.2, 95% CI -4.08 to -0.26, p = 0.03). Time spent sedentary was significantly higher in patients in 4/10 studies compared with healthy control groups, significantly lower in 1 study, while 5 studies showed no significant group difference. Conclusions: MVPA in children/adolescents with chronic disease appear to be well below guideline recommendations, although comparable with activity levels of their healthy peers except for children with malignancies. Tailored and disease appropriate intervention strategies may be needed to increase MVPA and reduce ST in children and adolescents with chronic disease
    corecore