2,610 research outputs found
Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics
This paper is devoted to estimates of the exponential decay of eigenfunctions
of difference operators on the lattice Z^n which are discrete analogs of the
Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our
investigation of the essential spectra and the exponential decay of
eigenfunctions of the discrete spectra is based on the calculus of so-called
pseudodifference operators (i.e., pseudodifferential operators on the group
Z^n) with analytic symbols and on the limit operators method. We obtain a
description of the location of the essential spectra and estimates of the
eigenfunctions of the discrete spectra of the main lattice operators of quantum
mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on
Z^3, and square root Klein-Gordon operators on Z^n
Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator
It is shown that the generation linewidth of an auto-oscillator with a
nonlinear frequency shift (i.e. an auto-oscillator in which frequency depends
on the oscillation amplitude) is substantially larger than the linewidth of a
conventional quasi-linear auto-oscillator due to the renormalization of the
phase noise caused by the nonlinearity of the oscillation frequency. The
developed theory, when applied to a spin-torque nano-contact auto-oscillator,
predicts a minimum of the generation linewidth when the nano-contact is
magnetized at a critical angle to its plane, corresponding to the minimum
nonlinear frequency shift, in good agreement with recent experiments.Comment: 4 pages, 2 figure
Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition
Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1)!, i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output
Nonlinear dynamics in one dimension: On a criterion for coarsening and its temporal law
We develop a general criterion about coarsening for a class of nonlinear
evolution equations describing one dimensional pattern-forming systems. This
criterion allows one to discriminate between the situation where a coarsening
process takes place and the one where the wavelength is fixed in the course of
time. An intermediate scenario may occur, namely `interrupted coarsening'. The
power of the criterion lies in the fact that the statement about the occurrence
of coarsening, or selection of a length scale, can be made by only inspecting
the behavior of the branch of steady state periodic solutions. The criterion
states that coarsening occurs if lambda'(A)>0 while a length scale selection
prevails if lambda'(A)<0, where is the wavelength of the pattern and A
is the amplitude of the profile. This criterion is established thanks to the
analysis of the phase diffusion equation of the pattern. We connect the phase
diffusion coefficient D(lambda) (which carries a kinetic information) to
lambda'(A), which refers to a pure steady state property. The relationship
between kinetics and the behavior of the branch of steady state solutions is
established fully analytically for several classes of equations. Another
important and new result which emerges here is that the exploitation of the
phase diffusion coefficient enables us to determine in a rather straightforward
manner the dynamical coarsening exponent. Our calculation, based on the idea
that |D(lambda)|=lambda^2/t, is exemplified on several nonlinear equations,
showing that the exact exponent is captured. Some speculations about the
extension of the present results to higher dimension are outlined.Comment: 16 pages. Only a few minor changes. Accepted for publication in
Physical Review
Sound and complete axiomatizations of coalgebraic language equivalence
Coalgebras provide a uniform framework to study dynamical systems, including
several types of automata. In this paper, we make use of the coalgebraic view
on systems to investigate, in a uniform way, under which conditions calculi
that are sound and complete with respect to behavioral equivalence can be
extended to a coarser coalgebraic language equivalence, which arises from a
generalised powerset construction that determinises coalgebras. We show that
soundness and completeness are established by proving that expressions modulo
axioms of a calculus form the rational fixpoint of the given type functor. Our
main result is that the rational fixpoint of the functor , where is a
monad describing the branching of the systems (e.g. non-determinism, weights,
probability etc.), has as a quotient the rational fixpoint of the
"determinised" type functor , a lifting of to the category of
-algebras. We apply our framework to the concrete example of weighted
automata, for which we present a new sound and complete calculus for weighted
language equivalence. As a special case, we obtain non-deterministic automata,
where we recover Rabinovich's sound and complete calculus for language
equivalence.Comment: Corrected version of published journal articl
Pattern formation without heating in an evaporative convection experiment
We present an evaporation experiment in a single fluid layer. When latent
heat associated to the evaporation is large enough, the heat flow through the
free surface of the layer generates temperature gradients that can destabilize
the conductive motionless state giving rise to convective cellular structures
without any external heating. The sequence of convective patterns obtained here
without heating, is similar to that obtained in B\'enard-Marangoni convection.
This work present the sequence of spatial bifurcations as a function of the
layer depth. The transition between square to hexagonal pattern, known from
non-evaporative experiments, is obtained here with a similar change in
wavelength.Comment: Submitted to Europhysics Letter
Penta-hepta defect chaos in a model for rotating hexagonal convection
In a model for rotating non-Boussinesq convection with mean flow we identify
a regime of spatio-temporal chaos that is based on a hexagonal planform and is
sustained by the {\it induced nucleation} of dislocations by penta-hepta
defects. The probability distribution function for the number of defects
deviates substantially from the usually observed Poisson-type distribution. It
implies strong correlations between the defects inthe form of density-dependent
creation and annihilation rates of defects. We extract these rates from the
distribution function and also directly from the defect dynamics.Comment: 4 pages, 5 figures, submitted to PR
Coarsening in potential and nonpotential models of oblique stripe patterns
We study the coarsening of two-dimensional oblique stripe patterns by
numerically solving potential and nonpotential anisotropic Swift-Hohenberg
equations. Close to onset, all models exhibit isotropic coarsening with a
single characteristic length scale growing in time as . Further from
onset, the characteristic lengths along the preferred directions and
grow with different exponents, close to 1/3 and 1/2, respectively. In
this regime, one-dimensional dynamical scaling relations hold. We draw an
analogy between this problem and Model A in a stationary, modulated external
field. For deep quenches, nonpotential effects produce a complicated
dislocation dynamics that can lead to either arrested or faster-than-power-law
growth, depending on the model considered. In the arrested case, small isolated
domains shrink down to a finite size and fail to disappear. A comparison with
available experimental results of electroconvection in nematics is presented.Comment: 13 pages, 13 figures. To appear in Phys. Rev.
Essential spectra of difference operators on \sZ^n-periodic graphs
Let (\cX, \rho) be a discrete metric space. We suppose that the group
\sZ^n acts freely on and that the number of orbits of with respect to
this action is finite. Then we call a \sZ^n-periodic discrete metric
space. We examine the Fredholm property and essential spectra of band-dominated
operators on where is a \sZ^n-periodic discrete metric space.
Our approach is based on the theory of band-dominated operators on \sZ^n and
their limit operators.
In case is the set of vertices of a combinatorial graph, the graph
structure defines a Schr\"{o}dinger operator on in a natural way. We
illustrate our approach by determining the essential spectra of Schr\"{o}dinger
operators with slowly oscillating potential both on zig-zag and on hexagonal
graphs, the latter being related to nano-structures
- …