342 research outputs found
Possibility to realize spin-orbit-induced correlated physics in iridium fluorides
Recent theoretical predictions of "unprecedented proximity" of the electronic
ground state of iridium fluorides to the SU(2) symmetric
limit, relevant for superconductivity in iridates, motivated us to investigate
their crystal and electronic structure. To this aim, we performed
high-resolution x-ray powder diffraction, Ir L-edge resonant inelastic
x-ray scattering, and quantum chemical calculations on Rb[IrF] and
other iridium fluorides. Our results are consistent with the Mott insulating
scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015)],
but we observe a sizable deviation of the state from the
SU(2) symmetric limit. Interactions beyond the first coordination shell of
iridium are negligible, hence the iridium fluorides do not show any magnetic
ordering down to at least 20 K. A larger spin-orbit coupling in iridium
fluorides compared to oxides is ascribed to a reduction of the degree of
covalency, with consequences on the possibility to realize spin-orbit-induced
strongly correlated physics in iridium fluorides
Radial basis approximation of single-phase flow in porous media based on the Green’s functions
The article discusses the problem of approximating solutions of differential equations describing the process of a two-dimensional fluid flow in porous media. The approximation is presented as a combination of radial basis functions on the basis of the Green’s function is used to solve the Poisson equation with variable coefficients in the case of steady state filtration and parabolic equations in the transient regime. To illustrate the effectiveness of the proposed approximation obtained by the field pressure distribution in the reservoir with a network of injection and production wells. Compare approximated pressure and design points to a satisfactory accuracy of the results
Building surrogate models for two-phase flow of fluids in porous media based on spatial radial basis approximation
The paper proposes a method for constructing the surrogate models for two-phase flow based on a combination of finite-difference solutions and fine-grid spatial approximation. The method provides the approximate models for solving optimal control the operating parameters of field development
Building and optimizing a model of low level for two-phase filtration
The paper proposes a method for constructing models of low level for two-phase flow based on a combination of finite-difference solutions and detailed spatial approximation, providing the possibility of approximating the models for solving optimal control the operating parameters of the oil reservoir
Solving optimization problems of optimal control of operational parameters of oil reservoir
The paper proposes a method for solving optimal control operating parameters of oil stratum: the arrangement of injection and production wells; regulation works well in setting of the two-phase filtration. Depending on the optimization of the planning horizon on the basis of the proposed method gives the prediction of increasing production by 27Â % in the long-term planning up to 60Â % for short-term planning
Strong short-range magnetic order in a frustrated FCC lattice and its possible role in the iron structural transformation
We investigate magnetic properties of a frustrated Heisenberg antiferromagnet
with a face-centered cubic (FCC) lattice and exchange interactions between the
nearest- and next-nearest neighbours, J1 and J2. In a collinear phase with the
wave vector Q = (pi,pi,pi) the equations of the self-consistent spin-wave
theory for the sublattice magnetization and the average short range order
parameter are obtained and numerically solved. The dependence of the Neel
temperature T_N on the ratio J2/J1 is obtained. It is shown, that at strong
enough frustration there is a wide temperature region above T_N with strong
short range magnetic order. Application of this result to description of
structural phase transition between alpha and gamma-phase of Fe is considered
A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system
We present a tight-binding potential for transition metals, carbon, and
transition metal carbides, which has been optimized through a systematic
fitting procedure. A minimal basis, including the s, p electrons of carbon and
the d electrons of the transition metal, is used to obtain a transferable
tight-binding model of the carbon-carbon, metal-metal and metal-carbon
interactions applicable to binary systems. The Ni-C system is more specifically
discussed. The successful validation of the potential for different atomic
configurations indicates a good transferability of the model and makes it a
good choice for atomistic simulations sampling a large configuration space.
This approach appears to be very efficient to describe interactions in systems
containing carbon and transition metal elements
Physics and chemistry of hydrogen in the vacancies of semiconductors
Hydrogen is well known to cause electrical passivation of lattice vacancies in semiconductors. This effect follows from the chemical passivation of the dangling bonds. Recently it was found that H in the carbon vacancy of SiC forms a three-center bond with two silicon neighbors in the vacancy, and gives rise to a new electrically active state. In this paper we examine hydrogen in the anion vacancies of BN, AlN, and GaN. We find that three-center bonding of H is quite common and follows clear trends in terms of the second-neighbor distance in the lattice, the typical (two-center) hydrogen-host-atom bond length, the electronegativity difference between host atoms and hydrogen, as well as the charge state of the vacancy. Three-center bonding limits the number of H atoms a nitrogen vacancy can capture to two, and prevents electric passivation in GaAs as well
- …