279 research outputs found

    Some Statistical Picture of Magnetic CP Stars Evolution

    Full text link
    We discuss some statistical results on the evolution of magnetic CP stars in the framework of the supposition about their binary nature.Comment: 3 pages, 3 figure

    Some evolutionary aspects of the binary stellar systems containing neutron star

    Full text link
    The obvious lack of the binary stellar systems that contain neutron stars (NS) is observed at present. Partly it is caused by the fact that it is very difficult to detect neutron star in a binary system if this relativistic component does not manifest itself as a radio pulsar. Among 1879 pulsars that are listed in the ATNF pulsar catalogue, only 141 pulsars are known to be the companions in binary systems. Only 81 objects having median mass estimation of more than 0.2 MM_{\odot} constitute the binary systems with pulsars. Nevertheless, such systems should be much more numerous and their investigation is of the great interest because thier structure and evolution can certainly help in our understanding of many unique properties that are seen in some stars.Comment: Accepted to published in the Odessa Astronomical Publications, 2012, vol. 25/1, p.35-3

    Neutron Star Mergers Are the Dominant Source of the r-process in the Early Evolution of Dwarf Galaxies

    Get PDF
    There are many candidate sites of the r-process: core-collapse supernovae (including rare magnetorotational core-collapse supernovae), neutron star mergers, and neutron star/black hole mergers. The chemical enrichment of galaxies---specifically dwarf galaxies---helps distinguish between these sources based on the continual build-up of r-process elements. This technique can distinguish between the r-process candidate sites by the clearest observational difference---how quickly these events occur after the stars are created. The existence of several nearby dwarf galaxies allows us to measure robust chemical abundances for galaxies with different star formation histories. Dwarf galaxies are especially useful because simple chemical evolution models can be used to determine the sources of r-process material. We have measured the r-process element barium with Keck/DEIMOS medium-resolution spectroscopy. We present the largest sample of barium abundances (almost 250 stars) in dwarf galaxies ever assembled. We measure [Ba/Fe] as a function of [Fe/H] in this sample and compare with existing [alpha/Fe] measurements. We have found that a large contribution of barium needs to occur at more delayed timescales than core-collapse supernovae in order to explain our observed abundances, namely the significantly more positive trend of the r-process component of [Ba/Fe] vs. [Fe/H] seen for [Fe/H] <~ -1.6 when compared to the [Mg/Fe] vs. [Fe/H] trend. We conclude that neutron star mergers are the most likely source of r-process enrichment in dwarf galaxies at early times.Comment: Accepted to ApJ on 2018 October 2

    High-resolution abundance analysis of HD 140283

    Full text link
    HD 140283 is a reference subgiant that is metal poor and confirmed to be a very old star. The abundances of this type of old star can constrain the nature and nucleosynthesis processes that occurred in its (even older) progenitors. The present study may shed light on nucleosynthesis processes yielding heavy elements early in the Galaxy. A detailed abundance analysis of a high-quality spectrum is carried out, with the intent of providing a reference on stellar lines and abundances of a very old, metal-poor subgiant. We aim to derive abundances from most available and measurable spectral lines. The analysis is carried out using high-resolution (R = 81 000) and high signal-to-noise ratio (800 < S/N/pixel < 3400) spectrum, in the wavelength range 3700 - 10475, obtained with a seven-hour exposure time, using the ESPaDOnS at the CFHT. The calculations in LTE were performed with the OSMARCS 1D atmospheric model and the spectrum synthesis code Turbospectrum, while the analysis in NLTE is based on the MULTI code. We present LTE abundances for 26 elements, and NLTE calculations for the species C I, O I, Na I, Mg I, Al I, K I, Ca I, Sr II, and Ba II lines. The abundance analysis provided an extensive line list suitable for metal-poor subgiant stars. The results for Li, CNO, alpha-, and iron peak elements are in good agreement with literature. The newly NLTE Ba abundance, along with a NLTE Eu correction and a 3D Ba correction from literature, leads to [Eu/Ba] = +0.59 +/- 0.18. This result confirms a dominant r-process contribution, possibly together with a very small contribution from the main s-process, to the neutron-capture elements in HD 140283. Overabundances of the lighter heavy elements and the high abundances derived for Ba, La, and Ce favour the operation of the weak r-process in HD 140283.Comment: 34 pages, 27 figure

    Reddenings of FGK supergiants and classical Cepheids from spectroscopic data

    Get PDF
    Accurate and homogeneous atmospheric parameters (Teff, log (g), Vt, [Fe/H]) are derived for 74 FGK non-variable supergiants from high-resolution, high signal-to-noise ratio, echelle spectra. Extremely high precision for the inferred effective temperatures (10-40 K) is achieved by using the line-depth ratio method. The new data are combined with atmospheric values for 164 classical Cepheids, observed at 675 different pulsation phases, taken from our previously published studies. The derived values are correlated with unreddened B-V colours compiled from the literature for the investigated stars in order to obtain an empirical relationship of the form: (B-V)o = 57.984 - 10.3587(log Teff)^2 + 1.67572(log Teff)^3 - 3.356(log (g)) + 0.0321(Vt) + 0.2615[Fe/H] + 0.8833((log (g))(log Teff)). The expression is used to estimate colour excesses E(B-V) for individual supergiants and classical Cepheids, with a precision of +-0.05 mag. for supergiants and Cepheids with n=1-2 spectra, reaching +-0.025 mag. for Cepheids with n>2 spectra, matching uncertainties for the most sophisticated photometric techniques. The reddening scale is also a close match to the system of space reddenings for Cepheids. The application range is for spectral types F0--K0 and luminosity classes I and II.Comment: accepted for publication (MNRAS

    Grid of theoretical NLTE equivalent widths of four Ba II lines and barium abundance in cool stars

    Full text link
    We present a grid of computed non-local thermodynamic equilibrium (NLTE) equivalent widths (EW) and NLTE abundance corrections for four Ba II lines: 4554, 5853, 6141, and 6496 A. The grid can be useful in deriving the NLTE barium abundance in stars having parameters in the following ranges: effective temperature from 4000 K to 6500 K, surface gravity log g from 0 to 5, microturbulent velocity 0 km s^-1 to 3 km s^-1, metallicity [Fe/H] from -2 to +0.5, and [Ba/Fe] from -0.4 to +0.6. The NLTE abundance can be either derived by EW interpolation (using the observed Ba II line EW) or by using the NLTE correction applied to a previously determined LTE abundance. Ba II line equivalent widths and the NLTE corrections were calculated using the updated MULTI code and the Ba II atomic model that was previously applied to determine the NLTE barium abundance in different types of stars. The grid is available on-line through the web, and we find that the grid Ba NLTE corrections are almost as accurate as direct NLTE profile fitting (to within 0.05-0.08 dex). For the weakest Ba II line (5853 A) the LTE abundances almost agree with the NLTE abundances, whereas the other three Ba II lines, 4554, 6141, and 6496 A, need NLTE corrections even at the highest metallicities tested here. The 4554 A line is extremely strong and should not be used for abundance analysis above [Fe/H]= -1. Furthermore, we tested the impact of different model atmospheres and spectrum synthesis codes and found average differences of 0.06 dex and 0.09 dex, respectively, for all four lines. At these metallicities we find an average Delta NLTE of +/-0.1 dex for the three useful Ba lines for subsolar cool dwarfs.Comment: 9 pages 8 figures submitted to A&

    Oxygen, α\alpha-element and iron abundance distributions in the inner part of the Galactic thin disc. II

    Full text link
    We have derived the abundances of 36 chemical elements in one Cepheid star, ASAS 181024--2049.6, located RG=2.53_{\rm G}= 2.53 kpc from the Galactic center. This star falls within a region of the inner thin disc poorly sampled in Cepheids. Our spectral analysis shows that iron, magnesium, silicon, calcium and titanium LTE abundances in that star support the presence of a plateau-like abundance distribution in the thin disc within 5 kpc of the Galactic center, as previously suggested by \cite{Maret15}. If confirmed, the flattening of the abundance gradient within that region could be the result of a decrease in the star formation rate due to dynamic effects, possibly from the central Galactic bar.Comment: 5 pages, 3 figure

    Sulphur in the Sculptor dwarf spheroidal galaxy - Including NLTE corrections

    Get PDF
    In Galactic halo stars, sulphur has been shown to behave like other α\alpha-elements, but until now, no comprehensive studies have been done on this element in stars of other galaxies. Here, we use high-resolution ESO VLT/FLAMES/GIRAFFE spectra to determine sulphur abundances for 85 stars in the Sculptor dwarf spheroidal galaxy, covering the metallicity range 2.5[Fe/H]0.8-2.5\leq \text{[Fe/H]} \leq-0.8. The abundances are derived from the S~I triplet at 9213, 9228, and 9238~\AA. These lines have been shown to be sensitive to departure from local thermodynamic equilibrium, i.e. NLTE effects. Therefore, we present new NLTE corrections for a grid of stellar parameters covering those of the target stars. The NLTE-corrected sulphur abundances in Sculptor show the same behaviour as other α\alpha-elements in that galaxy (such as Mg, Si, and Ca). At lower metallicities ([Fe/H]2\text{[Fe/H]}\lesssim-2) the abundances are consistent with a plateau at [S/Fe]+0.16\text{[S/Fe]}\approx+0.16, similar to what is observed in the Galactic halo, [S/Fe]+0.2\text{[S/Fe]}\approx+0.2. With increasing [Fe/H], the [S/Fe] ratio declines, reaching negative values at [Fe/H]1.5\text{[Fe/H]}\gtrsim-1.5. The sample also shows an increase in [S/Mg] with [Fe/H], most probably because of enrichment from Type Ia supernovae.Comment: 9 pages, 11 figures, 2 tables + 3 online tables, accepted in A&
    corecore