16 research outputs found

    Mutation of pescadillo Disrupts Oligodendrocyte Formation in Zebrafish

    Get PDF
    Background: In vertebrates, the myelin sheath is essential for efficient propagation of action potentials along the axon shaft. Oligodendrocytes are the cells of the central nervous system that create myelin sheaths. During embryogenesis, ventral neural tube precursors give rise to oligodendrocyte progenitor cells, which divide and migrate throughout the central nervous system. This study aimed to investigate mechanisms that regulate oligodendrocyte progenitor cell formation. Methodology/Principal Findings: By conducting a mutagenesis screen in transgenic zebrafish, we identified a mutation, designated vu166, by an apparent reduction in the number of oligodendrocyte progenitor cells in the dorsal spinal cord. We subsequently determined that vu166 is an allele of pescadillo, a gene known to play a role in ribosome biogenesis and cell proliferation. We found that pescadillo function is required for both the proper number of oligodendrocyte progenitors to form, by regulating cell cycle progression, and for normal levels of myelin gene expression. Conclusions/Significance: Our data provide evidence that neural precursors require pes function to progress through th

    Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience

    No full text
    Abstract-Near-infrared light via light-emitting diode treatment has documented therapeutic effects on neurons functionally inactivated by tetrodotoxin or methanol intoxication. Light-emitting diode pretreatment also reduced potassium cyanide-induced cell death, but the mode of death via the apoptotic or necrotic pathway was unclear. The current study tested our hypothesis that light-emitting diode rescues neurons from apoptotic cell death. Primary neuronal cultures from postnatal rat visual cortex were pretreated with lightemitting diode for 10 min at a total energy density of 30 J/cm 2 before exposing to potassium cyanide for 28 h. With 100 or 300 M potassium cyanide, neurons died mainly via the apoptotic pathway, as confirmed by electron microscopy, Hoechst 33258, single-stranded DNA, Bax, and active caspase-3. In the presence of caspase inhibitor I, the percentage of apoptotic cells in 300 M potassium cyanide was significantly decreased. Light-emitting diode pretreatment reduced apoptosis from 36% to 17.9% (100 M potassium cyanide) and from 58.9% to 39.6% (300 M potassium cyanide), representing a 50.3% and 32.8% reduction, respectively. Light-emitting diode pretreatment significantly decreased the expression of caspase-3 elicited by potassium cyanide. It also reversed the potassium cyanide-induced increased expression of Bax and decreased expression of Bcl-2 to control levels. Moreover, light-emitting diode decreased the intensity of 5-(and -6) chloromethy-2=, 7-dichlorodihydrofluorescein diacetate acetyl ester, a marker of reactive oxygen species, in neurons exposed to 300 M potassium cyanide. These results indicate that light-emitting diode pretreatment partially protects neurons against cyanide-induced caspase-mediated apoptosis, most likely by decreasing reactive oxygen species production, down-regulating pro-apoptotic proteins and activating anti-apoptotic proteins, as well as increasing energy metabolism in neurons as reported previously. © 2006 Published by Elsevier Ltd on behalf of IBRO

    Differential Muscle Hypertrophy Is Associated with Satellite Cell Numbers and Akt Pathway Activation Following Activin Type IIB Receptor Inhibition in Mtm1 p.R69C Mice

    No full text
    International audienceX-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1delta4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials

    Interactions among Ytm1, Erb1, and Nop7 Required for Assembly of the Nop7-Subcomplex in Yeast Preribosomes

    No full text
    In Saccharomyces cerevisiae, more than 180 assembly factors associate with preribosomes to enable folding of pre-rRNA, recruitment of ribosomal proteins, and processing of pre-rRNAs to produce mature ribosomes. To examine the molecular architecture of preribosomes and to connect this structure to functions of each assembly factor, assembly subcomplexes have been purified from preribosomal particles. The Nop7-subcomplex contains three assembly factors: Nop7, Erb1, and Ytm1, each of which is necessary for conversion of 27SA3 pre-rRNA to 27SBS pre-rRNA. However, interactions among these three proteins and mechanisms of their recruitment and function in pre-rRNPs are poorly understood. Here we show that Ytm1, Erb1, and Nop7 assemble into preribosomes in an interdependent manner. We identified which domains within Ytm1, Erb1, and Nop7 are necessary for their interaction with each other and are sufficient for recruitment of each protein into preribosomes. Dominant negative effects on growth and ribosome biogenesis caused by overexpressing truncated Ytm1, Erb1, or Nop7 constructs, and recessive phenotypes of the truncated proteins revealed not only interaction domains but also other domains potentially important for each protein to function in ribosome biogenesis. Our data suggest a model for the architecture of the Nop7-subcomplex and provide potential functions of domains of each protein
    corecore