663 research outputs found
Optical nonlinear dynamics with cold atoms in a cavity
This paper presents the nonlinear dynamics of laser cooled and trapped cesium
atoms placed inside an optical cavity and interacting with a probe light beam
slightly detuned from the 6S1/2(F=4) to 6P3/2(F=5) transition. The system
exhibits very strong bistability and instabilities. The origin of the latter is
found to be a competition between optical pumping and non-linearities due to
saturation of the optical transition.Comment: 6 pages, 7 figures, LaTe
Optical response of a misaligned and suspended Fabry-Perot cavity
The response to a probe laser beam of a suspended, misaligned and detuned
optical cavity is examined. A five degree of freedom model of the fluctuations
of the longitudinal and transverse mirror coordinates is presented. Classical
and quantum mechanical effects of radiation pressure are studied with the help
of the optical stiffness coefficients and the signals provided by an FM
sideband technique and a quadrant detector, for generic values of the product
of the fluctuation frequency times the cavity round trip. A
simplified version is presented for the case of small misalignments. Mechanical
stability, mirror position entanglement and ponderomotive squeezing are
accommodated in this model. Numerical plots refer to cavities under test at the
so-called Pisa LF facility.Comment: 14 pages (4 figures) submitted to Phys. Rev.
Zn-induced interactions between SARS-CoV-2 orf7a and BST2/Tetherin
We present in this work a first X-ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS-CoV-2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2-orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys(15) ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2-orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter
The role of Zn ions in the interaction between SARS-CoV-2 orf7a protein and BST2/tetherin
In this paper, we provide evidence that Zn2+ ions play a role in the SARS-CoV-2 virus strategy to escape the immune response mediated by the BST2-tetherin host protein. This conclusion is based on sequence analysis and molecular dynamics simulations as well as X-ray absorption experiments [1]
The role of Zn ions in the interaction between SARS-CoV-2 orf7a protein and BST2/tetherin
In this paper, we provide evidence that Zn2+ ions play a role in the SARS-CoV-2 virus strategy to escape the immune response mediated by the BST2-tetherin host protein. This conclusion is based on sequence analysis and molecular dynamics simulations as well as X-ray absorption experiments
Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium
The mirror relative motion of a suspended Fabry-Perot cavity is studied in
the frequency range 3-10 Hz. The experimental measurements presented in this
paper, have been performed at the Low Frequency Facility, a high finesse
optical cavity 1 cm long suspended to a mechanical seismic isolation system
identical to that one used in the VIRGO experiment. The measured relative
displacement power spectrum is compatible with a system at thermal equilibrium
within its environmental. In the frequency region above 3 Hz, where seismic
noise contamination is negligible, the measurement distribution is stationary
and Gaussian, as expected for a system at thermal equilibrium. Through a simple
mechanical model it is shown that: applying the fluctuation dissipation theorem
the measured power spectrum is reproduced below 90 Hz and noise induced by
external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte
Metal ion binding in wild-type and mutated frataxin: a stability study
This work studies the stability of wild-type frataxin and some of its variants found in cancer tissues upon Co2+ binding. Although the physiologically involved metal ion in the frataxin enzymatic activity is Fe2+, as it is customarily done, Co2+ is most often used in experiments because Fe2+ is extremely unstable owing to the fast oxidation reaction Fe2+ â Fe3+. Protein stability is monitored following the conformational changes induced by Co2+ binding as measured by circular dichroism, fluorescence spectroscopy, and melting temperature measurements. The stability ranking among the wild-type frataxin and its variants obtained in this way is confirmed by a detailed comparative analysis of the XAS spectra of the metal-protein complex at the Co K-edge. In particular, a fit to the EXAFS region of the spectrum allows positively identifying the frataxin acidic ridge as the most likely location of the metal-binding sites. Furthermore, we can explain the surprising feature emerging from a detailed analysis of the XANES region of the spectrum, showing that the longer 81-210 frataxin fragment has a smaller propensity for Co2+ binding than the shorter 90-210 one. This fact is explained by the peculiar role of the N-terminal disordered tail in modulating the protein ability to interact with the metal
Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection
In order to achieve full detection sensitivity at low frequencies, the
mirrors of interferometric gravitational wave detectors must be isolated from
seismic noise. The VIRGO vibration isolator, called 'superattenuator', is fully
effective at frequencies above 4 Hz. Nevertheless, the residual motion of the
mirror at the mechanical resonant frequencies of the system are too large for
the interferometer locking system and must be damped. A multidimensional
feedback system, using inertial sensors and digital processing, has been
designed for this purpose. An experimental procedure for determining the
feedback control of the system has been defined. In this paper a full
description of the system is given and experimental results are presented.Comment: 17 pages, 11 figures, accepted for publication on Review of
Scientific Instrument
Measurement and application of electron stripping of ultrarelativistic
New measurements of the stripping cross-section for ultrarelativistic
hydrogen-like lead ions passing through aluminium and silicon have been
performed at the Advanced Wakefield experiment at CERN. Agreement with existing
measurements and theory has been obtained. Improvements in terms of electron
beam quality and ion beam diagnostic capability, as well as further
applications of such an electron beam, are discussed
- âŠ