41,785 research outputs found
Performance evaluation of electrochemical concentration cell ozonesondes
Laboratory calibrations of more than a hundred electrochemical concentration cell (ECC) ozonesondes were determined relative to UV-photometry. The average intercept and slope, 0 plus or minus 5 nb and 0.96 plus or minus 0.06, respectively, indicate reasonable agreement with UV photometry, but with considerable variation from one ECC ozonesonde to another. The time required to reach 85% of the final reaction to a step-change in ozone concentration was found to average 51 seconds. Application of the individual calibrations to 20 sets of 1976 flight data reduced the average of the differences between ozonesonde and Dobson spectrophotometric measurements of total ozone from 3.9 to 1.3%. A similar treatment of a set of 10 1977 flight records improved the average ECC-Dobson agreement from -8.5 to -1.4%. Although systematic differences were reduced, no significant effect on the random variations was evident
Performance tests on the Kohmyr ECC ozone sonde
The reliability and accuracy of the Kohmyr ECC ozone sonde are determined. Emphasis is placed on establishing and testing for leak-free connections and stable pump flow rates as well as properly adjusting the pumping pressure. Calibration of the Kohmyr ECC ozone sondes and Dasibi monitors is described. Raw ordinate data and ozone connection data are presented in tabular form. The results of a linear regression treatment of the sonde-indicated ozone concentration vs. Dasibi readings for each switch position are included along with averages of the regression parameters over the six sequencing switch positions. It is suggested that sondes and Dasibi monitors be individually calibrated before flight
Effects of nuclear molecular configurations on the astrophysical S-factor for O + O
The impact of nuclear molecular configurations on the astrophysical S-factor
for O + O is investigated within the realistic two-center shell
model based on Woods-Saxon potentials. These molecular effects refer to the
formation of a neck between the interacting nuclei and the radial dependent
collective mass parameter. It is demonstrated that the former is crucial to
explain the current experimental data with high accuracy and without any free
parameter, whilst in addition the latter predicts a pronounced maximum in the
S-factor. In contrast to very recent results by Jiang et al., the S-factor does
not decline towards extremely low values as energy decreases.Comment: In press in Physics Letters
configuration of the system
We study the configuration of the system by
considering as a coupled channel. We solve the Faddeev equations
for these systems and find confirmation of the existence of a new
resonance around 1920 MeV with predicted in a single-channel
potential model and also found in a Faddeev calculation as an
state, with the generated in the ,
interaction.Comment: Published versio
A 3D Printed Toolbox for Opto-Mechanical Components
Nowadays is very common to find headlines in the media where it is stated
that 3D printing is a technology called to change our lives in the near future.
For many authors, we are living in times of a third industrial revolution.
Howerver, we are currently in a stage of development where the use of 3D
printing is advantageous over other manufacturing technologies only in rare
scenarios. Fortunately, scientific research is one of them. Here we present the
development of a set of opto-mechanical components that can be built easily
using a 3D printer based on Fused Filament Fabrication (FFF) and parts that can
be found on any hardware store. The components of the set presented here are
highly customizable, low-cost, require a short time to be fabricated and offer
a performance that compares favorably with respect to low-end commercial
alternatives.Comment: 9 pages, 9 figure
The Gould's Belt distance survey
Very Long Baseline Interferometry (VLBI) observations can provide the
position of compact radio sources with an accuracy of order 50
micro-arcseconds. This is sufficient to measure the trigonometric parallax and
proper motions of any object within 500 pc of the Sun to better than a few
percent. Because they are magnetically active, young stars are often associated
with compact radio emission detectable using VLBI techniques. Here we will show
how VLBI observations have already constrained the distance to the most often
studied nearby regions of star-formation (Taurus, Ophiuchus, Orion, etc.) and
have started to provide information on their internal structure and kinematics.
We will then briefly describe a large project (called The Gould's Belt Distance
Survey) designed to provide a detailed view of star-formation in the Solar
neighborhood using VLBI observations.Comment: To be published in the Revista Mexicana de Astronomia y Astrofisica
(Serie de Conferencias
Rotation in the ZAMS: Be and Bn stars
We show that Be stars belong to a high velocity tail of a single B-type star
rotational velocity distribution in the MS. This implies that: 1) the number
fraction N(Be)/N(Be+B) is independent of the mass; 2) Bn stars having ZAMS
rotational velocities higher than a given limit might become Be stars.Comment: 3 pages ; to appear in the proceedings of the Sapporo meeting on
active OB stars ; ASP Conference Series ; eds: S. Stefl, S. Owocki and A.
Okazak
Conformal mapping of ultrasonic crystals: confining ultrasound and cochlear-like wave guiding
Conformal mapping of a slab of a two-dimensional ultrasonic crystal generate
a closed geometrical arrangement of ultrasonic scatterers with appealing
acoustic properties. This acoustic shell is able to confine ultrasonic modes.
Some of these internal resonances can be induced from an external wave source.
The mapping of a linear defect produces a wave-guide that exhibits a
spatial-frequency selection analogous to that characteristic of a synthetic
"cochlea". Both, experimental and theoretical results are reported here.Comment: 4 pages, 4 figure
Floquet bound states around defects and adatoms in graphene
Recent studies have focused on laser-induced gaps in graphene which have been
shown to have a topological origin, thereby hosting robust states at the sample
edges. While the focus has remained mainly on these topological chiral edge
states, the Floquet bound states around defects lack a detailed study. In this
paper we present such a study covering large defects of different shape and
also vacancy-like defects and adatoms at the dynamical gap at
( being the photon energy). Our results, based on analytical
calculations as well as numerics for full tight-binding models, show that the
bound states are chiral and appear in a number which grows with the defect
size. Furthermore, while the bound states exist regardless the type of the
defect's edge termination (zigzag, armchair, mixed), the spectrum is strongly
dependent on it. In the case of top adatoms, the bound states quasi-energies
depend on the adatoms energy. The appearance of such bound states might open
the door to the presence of topological effects on the bulk transport
properties of dirty graphene.Comment: 16 pages, 14 figure
- …