58 research outputs found

    Changes in gene expression in human skeletal stem cells transduced with constitutively active Gs\u3b1 correlates with hallmark histopathological changes seen in fibrous dysplastic bone

    Get PDF
    Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the \u3b1 subunit of the G protein-coupled receptor complex (Gs\u3b1). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (Gs\u3b1R201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the Gs\u3b1R201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets

    Circulation of West Nile virus lineage 1 and 2 during an outbreak in Italy

    Get PDF
    AbstractIn 2011, from 26 September to 16 October, a small outbreak of West Nile virus (WNV) disease occurred on the island of Sardinia (Italy). According to the national case definition, six cases with acute neurological disease were confirmed in hospitalized patients, and four of them died; one of these was only 34 years old. In two case, WNV RNA was detected in urine, suggesting renal involvement. Sequence analysis showed lineage 1 and 2 circulation

    Adverse Events in Italian Nursing Homes During the COVID-19 Epidemic. A National Survey

    Get PDF
    Older people living in nursing homes (NHs) are particularly vulnerable in the ongoing COVID-19 pandemic, due to the high prevalence of chronic diseases and disabilities (e.g., dementia). The phenomenon of adverse events (AEs), intended as any harm or injury resulting from medical care or to the failure to provide care, has not yet been investigated in NHs during the pandemic. We performed a national survey on 3,292 NHs, either public or providing services both privately and within the national health system, out of the 3,417 NHs covering the whole Italian territory. An online questionnaire was addressed to the directors of each facility between March 24 and April 27, 2020. The list of NHs was provided by the Dementia Observatory, an online map of Italian services for people with dementia, which was one of the objectives of the implementation of the Italian National Dementia Plan. About 26% of residents in the Italian NHs for older people listed within the Dementia Observatory site had dementia. The objective of our study was to report the frequency of AEs that occurred during the months when SARS-CoV-2 spreading rate was at its highest in the Italian NHs and to identify which conditions and attributes were most associated with the occurrence of AEs by means of multivariate regression logistic analysis. Data are referred to 1,356 NHs that participated in the survey. The overall response rate was 41.2% over a time-period of six weeks (from March 24 to May 5). About one third of the facilities (444 out of 1,334) (33.3%) reported at least 1 adverse event, with a total of 2,000 events. Among the included NHs, having a bed capacity higher than the median of 60 beds (OR=1.57, CI95% 1.17–2.09; p=0.002), an observed increased in the use of psychiatric drugs (OR=1.80, CI95% 1.05–3.07; p=0.032), adopting physical restraint measures (OR=1.97, CI95% 1.47–2.64; p<0.001), residents hospitalized due to flu-like symptoms (OR =1.73, CI95% 1.28–2.32; p<0.001), and being located in specific geographic areas (OR=3.59, CI95% 1.81–7.08; OR = 2.90, CI95% 1.45–5.81 and OR = 4.02, CI05% 2.01–8.04 for, respectively, North-West, North-East and Centre vs South, p<0.001) were all factors positively associated to the occurrence of adverse events in the facility. Future recommendations for the management and care of residents in NHs during the COVID-19 pandemic should include specific statements for the most vulnerable populations, such as people with dementia

    West Nile virus transmission. results from the integrated surveillance system in Italy, 2008 to 2015

    Get PDF
    IIn Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control

    The Italian fund for Alzheimer's and other dementias: strategies and objectives to face the dementia challenge

    Get PDF
    The Italian Fund for Alzheimer's and other dementias was approved and signed in December 2021. The Fund is financed with 15 million euros in three years. The main goal is to provide new strategies in the field of dementia with a Public Health perspective. The Fund includes eight main activities that will be monitored and supervised by the Italian National Institute of Health: 1) development of a guideline for the assessment, management and support for people with dementia and their families/carers; 2) updating of the Dementia National Plan (DNP); 3) implementation of the documents of the DNP; 4) conducting surveys dedicated to the Italian Dementia Services; 5) promotion of dementia prevention strategies; 6) training strategies for healthcare professionals, families and caregivers; 7) creation of a National Electronic Record for Dementia; 8) evaluation and monitoring of activities promoted by Regions and Autonomous Provinces in the field of dementia, together with the dementia National Permanent Table. These activities are outlined in detail in the present paper

    An Interferon-Related Signature in the Transcriptional Core Response of Human Macrophages to Mycobacterium tuberculosis Infection

    Get PDF
    The W-Beijing family of Mycobacterium tuberculosis (Mtb) strains is known for its high-prevalence and -virulence, as well as for its genetic diversity, as recently reported by our laboratories and others. However, little is known about how the immune system responds to these strains. To explore this issue, here we used reverse engineering and genome-wide expression profiling of human macrophage-like THP-1 cells infected by different Mtb strains of the W-Beijing family, as well as by the reference laboratory strain H37Rv. Detailed data mining revealed that host cell transcriptome responses to H37Rv and to different strains of the W-Beijing family are similar and overwhelmingly induced during Mtb infections, collectively typifying a robust gene expression signature (“THP1r2Mtb-induced signature”). Analysis of the putative transcription factor binding sites in promoter regions of genes in this signature identified several key regulators, namely STATs, IRF-1, IRF-7, and Oct-1, commonly involved in interferon-related immune responses. The THP1r2Mtb-induced signature appeared to be highly relevant to the interferon-inducible signature recently reported in active pulmonary tuberculosis patients, as revealed by cross-signature and cross-module comparisons. Further analysis of the publicly available transcriptome data from human patients showed that the signature appears to be relevant to active pulmonary tuberculosis patients and their clinical therapy, and be tuberculosis specific. Thus, our results provide an additional layer of information at the transcriptome level on mechanisms involved in host macrophage response to Mtb, which may also implicate the robustness of the cellular defense system that can effectively fight against genetic heterogeneity in this pathogen

    Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection

    Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis

    Get PDF
    The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by theCD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy,and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoringof treatment efficacy.Fil: Lastrucci, Claire. Centre National de la Recherche Scientifique; FranciaFil: Bénard, Alan. Centre National de la Recherche Scientifique; FranciaFil: Balboa, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Pingris, Karine. Centre National de la Recherche Scientifique; FranciaFil: Souriant, Shanti. Centre National de la Recherche Scientifique; FranciaFil: Poincloux, Renaud. Centre National de la Recherche Scientifique; FranciaFil: Al Saati, Talal. Inserm; FranciaFil: Rasolofo, Voahangy. Pasteur Institute in Antananarivo; MadagascarFil: González Montaner, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Inwentarz, Sandra. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Moraña, Eduardo José. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Kondova, Ivanela. Biomedical Primate Research Centre; Países BajosFil: Verreck, Franck A. W.. Biomedical Primate Research Centre; Países BajosFil: Sasiain, María del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Neyrolles, Olivier. Centre National de la Recherche Scientifique; FranciaFil: Maridonneau Parini, Isabel. Centre National de la Recherche Scientifique; FranciaFil: Lugo Villarino, Geanncarlo. Centre National de la Recherche Scientifique; FranciaFil: Cougoule, Celine. Centre National de la Recherche Scientifique; Franci

    Type I Interferon Induction Is Detrimental during Infection with the Whipple's Disease Bacterium, Tropheryma whipplei

    Get PDF
    Macrophages are the first line of defense against pathogens. Upon infection macrophages usually produce high levels of proinflammatory mediators. However, macrophages can undergo an alternate polarization leading to a permissive state. In assessing global macrophage responses to the bacterial agent of Whipple's disease, Tropheryma whipplei, we found that T. whipplei induced M2 macrophage polarization which was compatible with bacterial replication. Surprisingly, this M2 polarization of infected macrophages was associated with apoptosis induction and a functional type I interferon (IFN) response, through IRF3 activation and STAT1 phosphorylation. Using macrophages from mice deficient for the type I IFN receptor, we found that this type I IFN response was required for T. whipplei-induced macrophage apoptosis in a JNK-dependent manner and was associated with the intracellular replication of T. whipplei independently of JNK. This study underscores the role of macrophage polarization in host responses and highlights the detrimental role of type I IFN during T. whipplei infection

    Low CCR7-Mediated Migration of Human Monocyte Derived Dendritic Cells in Response to Human Respiratory Syncytial Virus and Human Metapneumovirus

    Get PDF
    Human respiratory syncytial virus (HRSV) and, to a lesser extent, human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), can re-infect symptomatically throughout life without significant antigenic change, suggestive of incomplete or short-lived immunity. In contrast, re-infection by influenza A virus (IAV) largely depends on antigenic change, suggestive of more complete immunity. Antigen presentation by dendritic cells (DC) is critical in initiating the adaptive immune response. Antigen uptake by DC induces maturational changes that include decreased expression of the chemokine receptors CCR1, CCR2, and CCR5 that maintain DC residence in peripheral tissues, and increased expression of CCR7 that mediates the migration of antigen-bearing DC to lymphatic tissue. We stimulated human monocyte-derived DC (MDDC) with virus and found that, in contrast to HPIV3 and IAV, HMPV and HRSV did not efficiently decrease CCR1, 2, and 5 expression, and did not efficiently increase CCR7 expression. Consistent with the differences in CCR7 mRNA and protein expression, MDDC stimulated with HRSV or HMPV migrated less efficiently to the CCR7 ligand CCL19 than did IAV-stimulated MDDC. Using GFP-expressing recombinant virus, we showed that the subpopulation of MDDC that was robustly infected with HRSV was particularly inefficient in chemokine receptor modulation. HMPV- or HRSV-stimulated MDDC responded to secondary stimulation with bacterial lipopolysaccharide or with a cocktail of proinflammatory cytokines by increasing CCR7 and decreasing CCR1, 2 and 5 expression, and by more efficient migration to CCL19, suggesting that HMPV and HRSV suboptimally stimulate rather than irreversibly inhibit MDDC migration. This also suggests that the low concentration of proinflammatory cytokines released from HRSV- and HMPV-stimulated MDDC is partly responsible for the low CCR7-mediated migration. We propose that inefficient migration of HRSV- and HMPV-stimulated DC to lymphatic tissue contributes to reduced adaptive responses to these viruses
    corecore