13 research outputs found

    Detecting aseismic strain transients from seismicity data

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B06305, doi:10.1029/2010JB007537.Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M ≄ 1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor.This work was supported by NSF EAR grant 0738641 and USGS NEHRP grant G10AP00004

    Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood.</p> <p>Methods</p> <p>We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone.</p> <p>Results</p> <p>Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients.</p> <p>Conclusion</p> <p>Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.</p

    Latency and geofence testing of wireless emergency alerts intended for the ShakeAlertÂź earthquake early warning system for the West Coast of the United States of America

    No full text
    ShakeAlert, the earthquake early warning (EEW) system for the West Coast of the United States, attempts to provides crucial warnings before strong shaking occurs. However, because the alerts are triggered only when an earthquake is already in progress, and the alert latencies and delivery times are platform dependent, the time between these warnings and the arrival of shaking is variable. The ShakeAlert system uses, among other public alerting platforms like a mobile phone operating system, smartphone apps, and the Federal Emergency Management Agency Integrated Public Alert & Warning System (IPAWS). IPAWS sends Wireless Emergency Alerts (WEAs) informing people via their smartphones and other mobile devices about various events, such as natural hazards, child abductions, or public health information about COVID-19. However, little is known about the IPAWS delivery latencies. Given that people may have only a few seconds of notice after they receive an alert to take a protective action before they feel earthquake shaking, quantifying latencies is critical to understanding whether the IPAWS system is useful for EEW. In this study, we developed new methods to test the IPAWS distribution system's performance, both with devices in a controlled environment and as well as with a 2019 community-based feedback form, in Oakland and San Diego County, California, respectively. The controlled environment test used mobile phones (including smart and non-smart phones) and associated devices to determine alert receipt times; the community research form had participants self-report their receipt times. By triangulating the data between the controlled test environment and the community research, we determined the latency statistics as well as whether the geofence (the geographic area where the alert was intended to be sent) held broadly. We found that the latencies were similar between the two tests despite the large differences in population sizes. WEA messages were received within a median time frame of 6–12 s, and the geofence held with only a few exceptions. We use this latency to assess how the system would have performed in two large earthquakes, the 1989 M6.9 Loma Prieta and 2019 M7.1 Ridgecrest earthquakes, which both occurred near our WEA test locations. Our analysis revealed that had IPAWS been available during those earthquakes, particularly Loma Prieta, it would have provided crucial seconds of notice that damaging shaking was imminent in some locations relatively far from the epicenter. Further, we find affordable non-smart phones can receive WEAs as fast as smartphones. Finally, our new method can be used for latency and geospatial testing going forward for IPAWS and other similar alerting systems.ISSN:0925-753

    Expression of nogo-a is decreased with increasing gestational age in the human fetal brain

    Full text link
    Nogo is a member of the reticulon family. Our understanding of the physiological functions of the Nogo-A protein has grown over the last few years, and this molecule is now recognized as one of the most important axonal regrowth inhibitors present in central nervous system (CNS) myelin. Nogo-A plays other important roles in nervous system development, epilepsy, vascular physiology, muscle pathology, stroke, inflammation, and CNS tumors. Since the exact role of Nogo-A protein in human brain development is still poorly understood, we studied its cellular and regional distribution by immunohistochemistry in the frontal lobe of 30 human fetal brains. Nogo-A was expressed in the following cortical zones: ependyma, ventricular zone, subventricular zone, intermediate zone, subplate, cortical plate, and marginal zone. The number of positive cells decreased significantly with increasing gestational age in the subplate and marginal zone. Using different antibodies, changes in isoform expression and dimerization states could be shown between various cortical zones. The results demonstrate a significant change in the expression of Nogo-A during the development of the human brain. The effects of its time- and region-specific regulation have to be further studied in detail
    corecore