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[1] Aseismic deformation transients such as fluid flow, magma migration, and slow
slip can trigger changes in seismicity rate. We present a method that can detect these
seismicity rate variations and utilize these anomalies to constrain the underlying variations
in stressing rate. Because ordinary aftershock sequences often obscure changes in the
background seismicity caused by aseismic processes, we combine the stochastic Epidemic
Type Aftershock Sequence model that describes aftershock sequences well and the
physically based rate‐ and state‐dependent friction seismicity model into a single
seismicity rate model that models both aftershock activity and changes in background
seismicity rate. We implement this model into a data assimilation algorithm that
inverts seismicity catalogs to estimate space‐time variations in stressing rate.
We evaluate the method using a synthetic catalog, and then apply it to a catalog of
M ≥ 1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our
stressing rate estimates by comparing them to estimates from a geodetically derived slip
model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our
approach can identify large aseismic deformation transients in a multidecade long
earthquake catalog and roughly constrain the absolute magnitude of the stressing rate
transients. Our method can therefore provide a way to detect aseismic transients in
regions where geodetic resolution in space or time is poor.

Citation: Llenos, A. L., and J. J. McGuire (2011), Detecting aseismic strain transients from seismicity data, J. Geophys. Res.,
116, B06305, doi:10.1029/2010JB007537.

1. Introduction

[2] Transient aseismic processes such as fluid flow, mag-
matic intrusions, or slow slip events can alter the stress state
and trigger seismicity in a variety of tectonic environments.
For example, earthquake swarms associated with aseismic
deformation have been observed in subduction zones such as
Japan and New Zealand [Ozawa et al., 2007;Delahaye et al.,
2009], continental strike‐slip faults [Lohman and McGuire,
2007], and volcanic regions [Dieterich et al., 2000; Toda et al.,
2002; Segall et al., 2006; Wolfe et al., 2007; Montgomery‐
Brown et al., 2009]. However, there is not a straightforward
relationship between the magnitude of the aseismic transient
and the amount of seismicity triggered. In the Salton Trough
of California, a Mw 5.7 creep event triggered a swarm of
∼1000 1 ≤M ≤ 5.1 earthquakes [Lohman andMcGuire, 2007],
whereas offshore of central Honshu, Japan, recurrentMw ∼ 6.5
slow earthquakes on the plate interface typically trigger

swarms of ∼10s of 2 ≤M ≤ 5 earthquakes [Ozawa et al., 2007].
Moreover, a Mw 4.7 creep event detected on the Superstition
Hills fault in southern California did not trigger any earth-
quakes [Wei et al., 2009]. There is evidence, however, that the
seismicity rate varies in proportion to the stressing rate increase
caused by the aseismic transient [Toda et al., 2002; Segall
et al., 2006; Lohman and McGuire, 2007], although this is
likely complicated by a dependence on ambient stress condi-
tions related to the timing within a fault’s seismic cycle. Thus,
seismicity rate variations observed in earthquake catalogs can
potentially indicate when and where aseismic processes are
occurring on some faults, whichwould ordinarily require high‐
quality geodetic data to resolve. Moreover, the variations in
earthquake triggering observed during aseismic deformation
transients suggest an opportunity to learn about the physics of
earthquake triggering. They may also help constrain the extent
to which potentially observable geophysical processes, such as
slow slip, trigger seismicity that could then be forecastable in a
probabilistic sense.
[3] The rate‐ and state‐dependent friction model [Dieterich,

1994; Dieterich et al., 2000] provides one approach for map-
ping seismicity rate variations to underlying stressing rate
variations. This model has been successfully used to estimate
stress changes caused by a dike intrusion [Dieterich et al., 2000]
and slow slip events [Segall et al., 2006; Montgomery‐Brown
et al., 2009] on Kilauea volcano as well as a large intrusion
in the Izu islands [Toda et al., 2002]. However, aftershock
sequences in a catalog can obscure the background seismicity
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rate changes due to aseismic processes, particularly in regions
such as southern California that are characterized by high
aftershock productivity [Helmstetter, 2003; Helmstetter and
Sornette, 2003a]. In such cases, the stressing rate changes esti-
mated by the rate‐state inversion will be a combination of those
due to the underlying aseismic process and those due to the
static stress changes resulting from the seismicity itself. There-
fore, the rate‐state inversion should be used with caution.
[4] The stochastic Epidemic Type Aftershock Sequence

(ETAS)model [Ogata, 1988] provides an alternative approach to
estimate the time dependence of underlying drivingmechanisms.
This model represents earthquake occurrence as a point process,
characterized by a background rate and a set of parameters
associated with Omori’s law that can be optimized to fit a par-
ticular catalog. The ETAS model effectively detects when an
external process is triggering anomalous seismicity [Hainzl and
Ogata, 2005; Ogata, 2004, 2005; McGuire et al., 2005]. How-
ever, ETAS lacks a procedure for estimating smooth varia-
tions in the background earthquake rate and a quantitative
way to relate these directly to stressing rate variations.
[5] The rate‐state model and the ETAS model have com-

plementary strengths which, when combined, can provide an
effective tool for detecting seismicity rate anomalies and
relating them to underlying stress fields. In a previous study,
we combined these two models into a single seismicity rate
model that explains both aftershock activity as well as varia-
tions in background seismicity occurring in a region [Llenos
et al., 2009]. In this model, the observed seismicity rate R in
a catalog is approximately a linear combination of an aseis-
mically triggered component (reflecting seismicity triggered
by long‐term tectonic loading and aseismic processes) and an
earthquake‐earthquake triggered component (reflecting after-
shock sequences). Applying the rate‐state model to both
aseismic and coseismic stress changes can be complicated,
due to the different spatial scales involved. Coseismic stress
changes typically occur at scales of one to two rupture lengths
[Rubin and Gillard, 2000], which is on the order of a kilometer
for a M4 earthquake. It would be extremely difficult to resolve
variations at such scales given current earthquake detection
thresholds. Moreover, the rate‐state model has been shown to
be highly sensitive to stress and slip heterogeneities at small
spatial scales [Helmstetter and Shaw, 2006; Marsan, 2006;
Hainzl et al., 2009], and so using the rate‐state model to
accuratelymap the coseismic stress variations to seismicity rate
variations would require very high spatial resolution.
[6] However, the rate‐state model has had considerable

success at identifying the sign and magnitude of the average
stress change in a volume that results from nearby, large
aseismic stressing transients. Dieterich et al. [2000] applied
the rate‐state model to a dike intrusion in Kilauea to relate
seismicity rate variations observed in the catalog to the stress
changes caused by the opening dike. The stress changes
estimated from the seismicity using the rate‐state model
compared favorably with stress changes obtained from
independent boundary element methods, demonstrating that
the model can be successfully applied to detect aseismic
stressing rate variations acting on large spatial scales.
[7] Therefore, rather than using the rate‐state model for the

coseismically triggered component of seismicity rate, we
instead use the ETAS model to estimate it, because ETAS
models the spatial fall‐off of aftershocks with a continuous
function of space. We then subtract the ETAS estimate of

triggered seismicity from the observed (binned) catalog rate
to estimate temporal changes in background rate, and then
relate the residual seismicity rate directly to an aseismic
stressing rate with the rate‐state model. Thus, our approach
essentially consists of combining the ETAS model to estimate
coseismically triggered seismicity rate variations with the rate‐
state model to estimate aseismically triggered background rate
variations.
[8] In this paper, we implement this combined model in a

data assimilation algorithm that uses seismicity catalogs to
estimate stressing rate variations. Data assimilation algorithms
provide away to combine a dynamicmodelwith observed data
in order to estimate the time dependence of the underlying
(and often unobservable) state variables in the model. There-
fore, we incorporate the rate‐state equations into a state‐space
model and use an extended Kalman filter to estimate spatial
and temporal variations in stressing rate from the observed
seismicity rates in a catalog.
[9] We evaluate this methodwith a synthetic test, and apply

it to a catalog of events from the Salton Trough in southern
California in which a geodetically detected aseismic transient
occurred. To validate our approach, we compare the esti-
mated stressing rate peak during this aseismic slip event to
that obtained from a slip inversion of geodetic data [Lohman
and McGuire, 2007]. The results suggest that our seismicity
inversion method provides an accurate way to detect and
locate transient deformation strictly from earthquake catalogs
and may provide a means to constrain the absolute magnitude
of stressing rate variations. Our approach therefore may
enable the detection of these transients in regions where
geodetic resolution is poor, such as offshore in subduction
zones, and in time periods prior to the availability of high‐
quality geodetic data.

2. Method

[10] The seismicity rate R observed in a catalog is in general
a function of the stressing rate acting on the population of faults
in a region [Dieterich, 1994]. We assume that the seismicity in
a catalog is primarily triggered by three mechanisms: earth-
quake‐earthquake interactions (i.e., as aftershocks), transient
changes to the stress field from aseismic processes such as fluid
flow or slow slip, and long‐term tectonic loading. Therefore,
R(t,x) = f( _S) = f(RA, RC, RT), where RA reflects seismicity
triggered by aseismic processes, RC represents a coseismically
triggered component (i.e., earthquakes triggered by other
earthquakes), and RT is triggered by long‐term tectonic load-
ing. We assume that RT is small relative to RA if an aseismic
deformation/fluid‐flow transient is occurring and therefore
combine it with RA, so that R(t, x) ≈ f(RA, RC).
[11] In previous studies, the ETASmodel and the rate‐state

model have each been used to investigate both RA and RC.
Recent studies however have found that aftershock rates
predicted by the rate‐state model may be complicated by
factors such as the influence of small‐scale stress hetero-
geneities and a dependence on stressing rate [e.g.,Helmstetter
and Shaw, 2006; Marsan, 2006; Hainzl et al., 2009; Cocco
et al., 2010]. Therefore, we will model the coseismically
triggered RC using the ETAS model. Aseismic stressing rate
variations of interest, however, typically occur on larger
spatial and temporal scales, therefore we believe that the rate‐
state model may still be applied to relate the aseismically
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triggered RA to an aseismic stressing rate. Table 1 summarizes
the mathematical symbols used in the following sections.

2.1. ETAS Model

[12] The space‐time ETAS model is a point process model
that represents the seismicity rate R(t,x,y) as a summation of the
aftershock sequences produced by each event prior to time t plus
a time‐independent background seismicity rate m [Ogata, 1998;
Zhuang et al., 2005; Ogata and Zhuang, 2006]:

R t; x; yð Þ ¼ � x; yð Þ þ
X
i:ti<t

� Mið Þ � y t � tið Þ � f x� xi; y� yi;Mið Þ

ð1Þ

where

� Mð Þ ¼ Ke� M�Mcð Þ ð2Þ

y tð Þ ¼ p� 1

c
1þ t

c

� ��p

ð3Þ

f x; y;Mð Þ ¼ q� 1

�de� M�Mcð Þ 1þ x2 þ y2

de� M�Mcð Þ

� ��q

ð4Þ

The function �(M) is the expected number of events triggered
by an earthquake of magnitude M and involves the aftershock
productivityK and scaling parametera. The functiony(t) is the
probability density function form of the modified Omori law
and is specified by the Omori decay parameters p and c [Omori,
1894; Utsu, 1961]. The function f(x,y;M) describes the spatial
distribution of the events triggered by an earthquake of mag-
nitude M, specified by the parameters d, q, and scaling param-
eter h. The ETAS parameters m, K, c, p, a, d, q, and h are
generally obtained using maximum likelihood estimation from
the observed occurrence times ti and magnitudes Mi of earth-
quakes in a catalog with a magnitude of completeness Mc

[Ogata and Zhuang, 2006].

2.2. Rate‐ and State‐Dependent Friction Model

[13] In the rate‐ and state‐dependent friction model, the
seismicity rate R is a function of the stressing rate _S acting
on a population of faults governed by rate‐ and state‐
dependent friction [Dieterich, 1994]:

R ¼ r

� _Sr
ð5Þ

d� ¼ dt

A�
1� � _S
� � ð6Þ

where r is a steady state reference seismicity rate associated
with a reference stressing rate _Sr, _S is the modified Coulomb
stressing rate, g is a state variable, and A is a fault consti-
tutive parameter. We assume the normal stress s and
therefore the frictional parameter As remain constant.

2.3. Combined ETAS/Rate‐State Model

[14] Llenos et al. [2009] examined how the ETAS and
rate‐state model parameters changed during periods of high
stressing rate. In the ETAS model, the increase in stressing
rate due to aseismic transients primarily increases the
background seismicity rate (i.e., ETAS parameter m), while
other aftershock parameters, in particular the aftershock
productivity K, remain relatively unaffected. This contrasts
with the rate‐state model, where aftershock productivity,
while theoretically independent of stressing rate, can appear
to increase proportionally with it.
[15] Aftershock productivity is typically defined as the

cumulative number of events following a main shock. In the
rate‐state model, this number can be obtained by integrating
the seismicity rate predicted following a stress step after the
steady state seismicity rate has been subtracted. When an
increase in stressing rate occurs, the seismicity rate evolves
toward a new steady state rate (equations (5)–(6)). Simulations
indicate that if this new steady state rate is known and used to
calculate the productivity of a stress step that occurs during a
period of high stressing rate, then the productivity does not
change compared to the case where the same stress step occurs
during the background stressing rate. This demonstrates that
aftershock productivity is independent of stressing rate in the
rate‐state model at steady state.
[16] However, in real applications, a new steady state

seismicity rate will most likely not be resolvable, if it is even
achieved. Transients such as slow slip events and magma
intrusions can last on the order of 1–2 weeks, during which

Table 1. Mathematical Notation

Symbol Description

ETAS Model Notation
d, q, h Aftershock spatial

distribution parameters
K Aftershock productivity
p, c Omori decay parameters
a Magnitude scaling parameter
m Background seismicity rate
M, Mc Event magnitude,

cutoff magnitude

Rate‐State Model Notation
A Fault constitutive parameter
r Reference seismicity rate
R, RA, RC, RT Observed, aseismically, coseismically and

long‐term tectonically triggered seismicity rates
s Effective normal stress
_Sr Reference stressing rate
_S; _SA, _Sp Stressing rate, aseismic stressing rate,

plate tectonic stressing rate
g Seismicity state variable

Filter Notation
d Data (observation) vector
g Kalman gain
h, H Measurement (model) matrix and Jacobian
L Likelihood
N, Nd, Ne Number of spatial cells, observations, epochs
Q Process covariance matrix
R Data covariance matrix
t, T State transition model and Jacobian
x State variables
d, w Measurement, process noise
t, " Random walk scale parameters for _SA, ln(g)
x Data covariance scalar multiplier
S Error covariance matrix
n Innovation
V Variance of innovation
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time the stressing rate is often varying continuously, resulting
in a similarly varying seismicity rate.Moreover, the evolution
of the state variable g, which governs the relationship
between stressing and seismicity rate and therefore the time
it would take to achieve a new steady state (equation (6)),
depends on the value of the frictional parameterAs. For larger
values of this parameter (∼0.1 MPa), a new steady state
seismicity rate may never be achieved during the transient.
Therefore, the long‐term background seismicity rate may be
the only resolvable steady state rate. When this rate is used
rather than the larger transient rate to estimate the productivity
by subtracting the background events, this can cause an
apparent increase in the productivity (i.e., cumulative number
of events) that is actually due to the increase in the back-
ground seismicity rate during the transient. This is consistent
with the observation that when the ETAS model is fit to
swarms that occurred during transients, the background
seismicity rate m increased by orders of magnitude while the
productivity and other aftershock parameters remained rela-
tively unaffected [Llenos et al., 2009].
[17] The total seismicity rate R can then be approximately

modeled as a linear combination of the aseismically trig-
gered component RA and the coseismically triggered com-
ponent RC:

R tð Þ ¼ RA tð Þ þ RC tð Þ � RA tð Þ þ
X
ti�t

Ke� Mi�Mcð Þ

t � ti þ cð Þp ð7Þ

where RC is represented by the ETAS model, and RA is
essentially a time‐dependent version of m that will reflect the
variations in seismicity rate triggered by transients. We first
approximate RA by subtracting out an ETAS‐predicted rate
from the observed rate R in a catalog. We then directly relate
our estimate of RA to an aseismic stressing rate _SA through
the rate‐state model equations. We utilize the space‐time
version of the ETAS model [Ogata and Zhuang, 2006], so
that the model becomes:

RA t; x; yð Þ ¼ R t; x; yð Þ � RC t; x; yð Þ ¼ R t; x; yð Þ
�
X
i:ti<t

Ke� Mi�Mcð Þ � p� 1

c
1þ t � ti

c

� ��p

� q� 1

�de� Mi�Mcð Þ 1þ x� xið Þ2 þ y� yið Þ2
de� Mi�Mcð Þ

 !�q

¼ r
_Sr�

ð8Þ

d� ¼ dt

A�
1� � _SA þ _Sp

� �� 	 ð9Þ

where _Sp is the background plate tectonic stressing rate. This
combined model of seismicity rate now reduces the impact
of aftershock sequences on the estimation of RA by using
ETAS to model RC and provides a way to quantitatively
relate seismicity rate variations to stressing rate variations.

2.4. Extended Kalman Filter Algorithm

[18] We incorporate the aseismically triggered rate RA into
a state‐space model, which describes a system using a state

vector that evolves over time and can be related to observ-
able data. These systems can be solved with data assimila-
tion algorithms, which are a way to combine a dynamic
model (e.g., the rate‐state model) with noisy observed data
(e.g., seismicity rates) to produce temporal estimates of the
underlying (and often unobservable) state variables that
describe the system (e.g., stressing rate). Commonly used in
fields such as hydrology, meteorology, and engineering,
data assimilation also provides a way to combine maximum
likelihood estimation of time‐independent model parameters
with the estimation of time‐dependent variables.
[19] Our state‐space model, detailed in Appendix A,

consists of a nonlinear measurement equation that relates the
observations dk to the state vector xk at each time step k:

dk ¼ hk xkð Þ þ !k ; !k � N 0;Rkð Þ ð10Þ

and a nonlinear state transition equation that describes how
the state vector evolves over time:

xkþ1 ¼ t xkð Þ þ 	kþ1; 	kþ1 � N 0;Qkþ1ð Þ ð11Þ

The data vector dk consists of the aseismically triggered rate
RA estimated in each spatial box and relates to the state vari-
ables through the measurement matrix hk, which incorporates
the rate‐state model equations.
[20] We assume the measurement and process noises wk and

dk+1 are Gaussian and described by the data and process
covariance matrices Rk and Qk+1 respectively. Measurement
noise accounts for uncertainties in the seismicity rate observa-
tions, and incorporates the uncertainties in the ETASparameters
used to estimate RA. Process noise accounts for uncertainties
in the dynamic system (i.e., the rate‐state model) used to model
the state variables over time. Our state variables xk consist of the
long‐term tectonic loading rate _Sp, the aseismic stressing rate
_SA, and the logarithm of the rate‐state seismicity state variable
g to ensure positivity. The variables _SA and ln(g) are modeled
as random walk processes with scale parameters of t and "
respectively to allow for arbitrary stressing rate histories. We
divide the region into N spatial boxes and estimate the state
variables in each box.
[21] The system is solved using an extended Kalman filter

algorithm [e.g., Gelb, 1974; Anderson and Moore, 2005].
Kalman filters estimate the state of a system over time,
assuming the system can be described by linear models and
Gaussian noise. This makes it relatively straightforward
to predict the mean and covariance of the state variables at
the next time step, then update or correct that prediction
with the measurement observed at that time step. Kalman
filters are widely applied in many branches of engineering
and science, including geodesy [e.g., Segall and Matthews,
1997; McGuire and Segall, 2003]. Because of the nonline-
arity in both our model and state transition matrices (see
Appendix A), we utilize an extended Kalman filter, which
linearizes the model at each time step.
[22] We first make a priori estimates of the state vector x0|0

and covariance S0∣0 and update them with the first observa-
tions to obtain x1∣1 and S1∣1. The subscripts xi∣j indicate
the estimate of x at time step i given data through time step j.
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We then use the filter prediction equations to estimate the
state vector and covariance at the next time step k + 1:

xkþ1jk ¼ t xkjk
� �þ 	kþ1; 	kþ1 � N 0;Qkþ1ð Þ ð12Þ

Skþ1jk ¼ TkSkjkTT
k þQkþ1 ð13Þ

Here T is the Jacobian of the nonlinear state transition
model t, which incorporates the rate‐state evolution equation
(equation (6)) to describe how the state variables evolve from
one time step to the next (see Appendix A).
[23] The predictions are then compared with the observa-

tions at the current time step and updated using the filter
update equations:

xkþ1jkþ1 ¼ xkþ1jk þ gkþ1 dkþ1 � h xkþ1jk
� �� 	 ð14Þ

Skþ1jkþ1 ¼ I� gkþ1Hkþ1

� 	
Skþ1jk ð15Þ

where the Kalman gain g is computed by:

gkþ1 ¼ Skþ1jkHT
kþ1 Hkþ1Skþ1jkH

T
kþ1 þ Rkþ1

h i�1
ð16Þ

and H is the Jacobian of the nonlinear measurement matrix
h, which incorporates the rate‐state model (equation (5)) to
relate the observed seismicity rates to the underlying state
variables (see Appendix A).
[24] These prediction and update steps iterate forward

through the entire data set from k = 1 to Ne, where Ne is the
total number of time steps, resulting in estimates of the state
variables xk∣k at each time step k given the data up to and
including k. We can run the filter backward in time in a
process known as smoothing to obtain a back‐smoothed
estimate of the state variables (i.e., xk∣Ne, or estimates of x
at time step k given the entire data set).

2.5. Likelihood Calculations

[25] There are a total of 11 time‐independent parameters
in our model, seven of which are the space‐time ETAS
parameters (K, c, p, a, d, q, and h), two of which are rate‐
state parameters (As and r), and two of which are filter
hyperparameters (t and "). We assume that all of the time‐
independent parameters are also constant in space over the
entire study area. We first optimize the model over the set of
ETAS parameters given a history of occurrence Ht using a
point process likelihood function [Ogata, 1998; Daley and
Vere‐Jones, 2002]:

ln L K; c; p; �; d; q; �jHtð Þ ¼
Xn
i¼1

lnR ti; xi; yijHtð Þ

�
ZT
0

ZZ
A

R t; x; yjHtð ÞdAdt ð17Þ

While this likelihood computation works well to estimate
the ETAS parameters, it is relatively insensitive to changes
in the non‐ETAS parameters. Based on synthetic tests, it is
preferable to optimize the set of non‐ETAS parameters by
computing a likelihood based on prediction error decom-
position [Harvey, 1989; Segall and Matthews, 1997]. For
Gaussian data, the likelihood can be expressed as:

logL r;A�; 
; "ð Þ ¼ � 1

2
Nd � Nd logNdð Þ � 1

2

XNe

k¼1

log Vkj j

� 1

2
Nd log

XNe

k¼1

nT
k V

�1
k nk

" #
ð18Þ

where Nd is the total number of observations, nk is the
innovation at each time step k:

nk ¼ dk � d̂kjk�1 ¼ dk � h xkjk�1

� � ð19Þ

and Vk is the variance of the kth innovation:

Vk ¼ HkSkjk�1H
T
k þ Rk ð20Þ

Figure 1. (a) Synthetic catalog locations and boxes used in
analysis. Parameters used to generate the catalog are K =
4.5e‐4 events/day/deg2, a = 0.8, p = 1.2, c = 0.0001 days,
d = 0.001 deg2, q = 3, h = 0.3, r = 10 events/day, and As =
0.001 MPa. (b) Synthetic catalog earthquake magnitudes and
occurrence times. Aftershock sequences dominate both the
map and the magnitude‐time history, obscuring the anomalous
seismicity triggered by the transient.
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This likelihood function also employs a maximum likeli-
hood estimate (MLE) for the data covariance scalar multi-
plier x2, which is the value to which the data covariance
matrix R is assumed to be known (see Appendix A):

�̂
2 ¼ 1

Nd

X
nT
kV

�1
k nk ð21Þ

With these equations, we then grid search over multiple
non‐ETAS parameter sets to determine their maximum
likelihood estimate, with initial grid spacing of a factor of
10 for each parameter.
[26] A fundamental assumption we have made in this

initial implementation is that the data and errors are
Gaussian distributed, which is likely incorrect in that
earthquake statistics typically involve non‐Gaussian dis-
tributions. Future implementations could incorporate non‐
Gaussian error distributions by utilizing particle filter

methods [e.g., Fukuda and Johnson, 2008; Werner, 2008;
Werner et al., 2011].

2.6 Summary

[27] Our complete algorithm can be summarized as follows:
[28] 1. Determine magnitude of completeness for the catalog.
[29] 2. Optimize the ETAS parameters for the entire catalog

using a space‐time ETAS algorithm [Zhuang et al., 2005;
Ogata and Zhuang, 2006].
[30] 3. Subtract the ETAS‐predicted rate from the observed

(binned) seismicity rate in each ofN spatial boxes to calculate
RA, which is the data vector for the filter.
[31] 4. For a given set of non‐ETAS parameters, run the

extended Kalman filter to obtain the time history of the state
variables.
[32] 5. Compute the Gaussian likelihood associated with

the set of non‐ETAS parameters.

Figure 2. (a) True stressing rate _S used in each spatial box for the synthetic test. A transient rate is imposed
in box 5 (purple), involving an increase in _S by a factor of 10 over the background rate of 0.1 MPa/yr
imposed in the other boxes (green). (b) Observed seismicity rates in each spatial box (colors) obtained
by binning occurrence times in time windows of 1 day. The anomalous seismicity rate due to the transient
in box 5 (purple) is overshadowed by jumps in rate due to aftershock sequences, therefore the stressing rate
estimate from a straightforward rate‐state inversion will primarily reflect changes due to these larger peaks.
(c) Data vectors (i.e., the aseismically triggered seismicity rate RA) in each box obtained by subtracting out
the ETAS‐predicted rate. The anomalous seismicity in box 5 (purple) due to the transient is nowmuch more
visible. (d) Stressing rate in each box estimated using the rate‐state inversion ofDieterich et al. [2000]. The
transient in box 5 is overshadowed by the larger stressing rate changes due to the aftershock sequences in the
catalog.
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[33] 6. Repeat steps 4 and 5 as a grid search for different
parameter sets to obtain maximum likelihood estimates of
the non‐ETAS parameters.

3. Synthetic Test

[34] To test the validity of our inversion algorithm, we
generate a synthetic catalog of events using known model
parameters and a stressing rate history that we will attempt
to recover. We subdivide a 30 km by 30 km region into
9 spatial boxes (Figure 1a) and impose a factor of 10 increase
in stressing rate above a background rate of 0.1 MPa/yr in the
center box (box 5). The stressing rate in the other boxes
remains constant at the background rate (Figure 2a). Given
these stressing rate histories, we use the rate‐state equations
(equations (5)–(6)) to calculate associated background seis-
micity rate histories, which are used in an ETAS simulator
[Felzer et al., 2002; Helmstetter and Sornette, 2002, 2003b]
to generate a synthetic catalog with a magnitude of com-
pletenessMC = 0. Figure 1 shows the catalog event locations,
magnitudes and times of occurrence. Occurrence times were
binned in time windows of 1 day to obtain seismicity rates.
Aftershocks of the largest events dominate the catalog,
obscuring the seismicity rate variations in both space and time
due to the transient (Figure 2b). The anomalous seismicity
triggered by the transient only becomes readily apparent fol-
lowing the removal of the ETAS‐predicted rate (Figure 2c). If
the Dieterich et al. [2000] rate‐state inversion was applied to
this catalog prior to the removal of the ETAS‐predicted rate,
the resulting stressing rate estimates would be dominated by
stress changes due to the aftershocks rather than the aseismic
transient of interest (Figure 2d).

3.1. Parameter Estimation

[35] We first estimate the best fitting ETAS parameters
using the space‐time algorithm of Ogata and Zhuang
[2006]. The parameters used in the simulator were K =
4.5e‐4 events/day/deg2, a = 0.8, p = 1.2, c = 0.0001 days,
d = 0.001 deg2, q = 3, and h = 0.3. The maximum likelihood
estimates of these parameters from the estimation algo-
rithm were K = 0.15 events/day/deg2, a = 1.8, p = 1.2, c =
0.0001 days, d = 0.5e‐8 deg2, q = 1.35, and h = 0.58. The
simulator used a different form for the cluster size factor
�(M) (equation (2)) to generate the synthetic catalog [Felzer
et al., 2002; Helmstetter and Sornette, 2003b] than the form
utilized in the estimation algorithm [Ogata and Zhuang,
2006], resulting in differences between the true and esti-
mated values of the parameters K and a. The simulator also
uses a slightly different form of the spatial probability density
function (equation (4)) than that used by the estimation
algorithm, causing differences in the estimates of the spatial
scaling parameters d, q, and h. However, both the simulation
and estimation algorithms employed the same temporal
function based on the modified Omori law (equation (3)), and
the estimation algorithm recovers the true values for p and c
even though the assumption of constant background seis-
micity rate is violated. Thus, the space‐time ETAS para-
meters are well resolved by the estimation algorithm, despite
the background rate being time‐dependent.
[36] We subtract the ETAS‐predicted seismicity rate from the

binned seismicity rate to obtain the data vector (equations (8)
and (10)), which is the input for the extended Kalman filter.
We ran the filter with a number of different values for the non‐
ETAS parameters (r, As, t, and ") and calculated the Gaussian

Figure 3. (a) Log likelihood versus smoothing parameter ". (b) Data covariance multiplier �̂2 versus ".
Ideally �̂2 should be close to 1, because the data covariance Rk is estimated a priori. The MLE of " is
indicated by a square. Our preferred value for ", for which �̂2 ∼1, is indicated by a star.
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likelihood for each filter run (equation (18)). Again, the fun-
damental assumption made here is that the data and errors are
Gaussian distributed (see section 2.5). The parameter r could
only be constrained to within an order of magnitude of the true
value, and we observed a trade‐off in likelihood between the
parameters As and t, suggesting there is little constraint in As.
Moreover, an order of magnitude change in the value of As
(e.g., from 0.001 MPa to 0.01 MPa) resulted in a change of the
estimated peak stressing rate by a factor of 2, suggesting that our
method is not sensitive to this parameter. Therefore, we fixed
As and r to be their true values (0.001 MPa and 10 events/day)
and grid searched over t and ", the scaling parameters for the
randomwalk processes used tomodel _SA and ln(g) respectively.
[37] We employ two further constraints to select appro-

priate values for t and ". The first constraint comes from
enforcing consistency between the filter’s estimates of the
state variables _SA and ln(g). Because we model these vari-
ables as stochastic processes with noise specified by

covariance matrix Qk (equations (11) and (A8)), they do not
have to strictly obey equations (5)–(6). Thus, the filter
estimate of total stressing rate _S(the sum of the estimates of
_SA and _Sp) can be integrated using the rate‐state equations
(equations (5)–(6)) to produce an estimate of g that is not
identical to the filter estimate for g. Ideally these two esti-
mates of g should closely agree with one another. This
places a constraint on the value of t (i.e., the temporal
smoothing of _SA), since it must be large enough to allow
enough variation in _S for it to integrate to g. However, if t is
too large (i.e., _SA too rough), the error covariance matrix S
becomes nonpositive semidefinite, and the prediction step
(equation (13)) can no longer be computed.
[38] A second constraint is employed to help choose a

value for ". Figure 3 shows the Gaussian likelihood and
maximum likelihood estimate of the data covariance mul-
tiplier �̂2 for various values of ", calculated using equations
(18) and (21). The maximum likelihood occurs when " =
0.79 (Figure 3a); however, at this value of ", �̂2 is signifi-
cantly less than 1 (Figure 3b). Because we estimate Rk a
priori based on the variance of the data vector, �̂2 should be
∼1. Values other than 1 will overfit or under fit the data.
Therefore, we choose " such that �̂2 ∼1. Moreover, at higher
values of ", the filter estimate for _S fails to integrate to
match the filter estimate for g as well as at smaller values of
", because the stressing rate estimate cannot vary enough to
match the variance in g (Figure 4a). Additionally, higher
values of " ultimately overfit the data (Figure 4b). While the
filter fits the smaller peaks in the data vector well, it over-
predicts the largest peak. Smaller values of " smooth out the
smaller peaks in seismicity rate but end up fitting the largest
peak well. Therefore, we identify a preferred value for " by
determining the MLE and then running the filter for
increasingly smaller values of " until �̂2 ∼1. Our preferred
value for " is thus 0.16, for which �̂2 ∼1, rather than the
MLE of 0.79. The stressing rate estimate results show that
the estimate for _S with " = 0.16 actually comes closer to
recovering the true _S than the MLE value of " (Figure 4c).
[39] To summarize, of the 11 model parameters used in

our algorithm, the seven space‐time ETAS parameters are
well‐resolved by maximizing a point process likelihood
function [Ogata and Zhuang, 2006]. The two random walk
scaling parameters t and " can be optimized using a
Gaussian likelihood function subject to constraints. How-
ever, neither likelihood function well constrains the rate‐
state parameters r and As and thus these parameters should
be fixed a priori.

3.2. Synthetic Test Results

[40] Figure 5 shows the resulting filter estimates of _S for
each box using " = 0.16. Both the forward‐ and back‐
smoothed filter estimates clearly identify the transient in
box 5. While not quite as large as the true stressing rate,
the filter‐estimated peak stressing rate is still within a factor
of 2–3 of the true rate. The forward filter estimate delays
the onset of the transient compared to the true onset,
although the back‐smoothed estimate mitigates this effect
somewhat. Clearly, the filter detects when and in which
region the transient is occurring (Figure 5). This is an
encouraging result, because this test involved an increase in
stressing rate of only a factor of 10 over the tectonic rate.

Figure 4. Comparison of back‐smoothed filter results in
box 5 for different values of ". (a) Estimates for the rate‐state
seismicity state variable g for the MLE of " = 0.79 (teal), and
our preferred value of " = 0.16 (black). Also shown are the
estimates for g directly derived from the filter (solid lines)
and estimates for g integrated from the filter estimate of
_S using the rate‐state model (equations (5)–(6)) (dashed
lines). Ideally the two estimates at a given value of " should
agree, which is better achieved when " = 0.16. (b) Fit to the
observed data vector in box 5 (red) by each value of ". For the
MLE (teal), the filter clearly overfits the data. The " = 0.16
case (black) better fits the largest peak. (c) Forward filter
estimates for _S in box 5 with " = 0.79 (teal) and " = 0.16
(black), compared to the true _S (red). The " = 0.16 estimate
comes closer to recovering the true stressing rate.
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The stressing rate jumps that occur during slow earthquakes
and magma intrusions are likely to be several orders of
magnitude larger [Thatcher, 2001; Toda et al., 2002;
Lohman and McGuire, 2007].

4. Data Analysis: Salton Trough

[41] We next apply our algorithm to real earthquake data
from the Salton Trough in southern California. In the Salton
Trough, a transition occurs from a divergent plate boundary
setting in theGulf of California to the south, to the SanAndreas
strike‐slip fault system to the north. The region is characterized
by high heat flow [Kisslinger and Jones, 1991], which poten-
tially acts to subdue aftershock activity [Ben‐Zion and
Lyakhovsky, 2006; Yang and Ben‐Zion, 2009; Enescu et al.,
2009]. A high rate of earthquake swarm activity has been
observed [e.g.,Richter, 1958;Brune and Allen, 1967;Hill et al.,
1975; Johnson and Hadley, 1976; Lohman and McGuire,
2007; Roland and McGuire, 2009], possibly driven by mag-
matic intrusion [Hill, 1977] or aseismic fault creep [Lohman
and McGuire, 2007; Roland and McGuire, 2009]. Geodetic

measurements have also detected a number of aseismic tran-
sients in this region, including afterslip following the 1987
M6.6 Superstition Hills earthquake [Williams and Magistrale,
1989], creep events on the Superstition Hills fault [Wei et al.,
2009], and aseismic creep on the Obsidian Buttes fault
[Lohman and McGuire, 2007].

4.1. Data Binning

[42] We analyze a catalog of M ≥ 1.5 earthquakes that
occurred in the Salton Trough from February 1990 to
August 2009. We choose a magnitude cutoff of 1.5 based on
frequency magnitude plots of the entire data set, as well as
in each spatial bin and in time windows following the largest
events to ensure that the cutoff magnitude does not change
over the space‐time windows under consideration. Because
of the partial derivatives involved in setting up the state‐
space model equations (e.g., equations (A5) and (A7)), we
need to be able to resolve the background seismicity rate in
each space‐time window. Therefore we divide the region up
into 4 spatial boxes (Figure 6) and bin the occurrence times
into time windows of 20 days to obtain seismicity rates in

Figure 5. Filter estimates of stressing rate _S in each box. The red line indicates true stressing rate, the
purple line indicates the forward estimate, and the black line indicates the back‐smoothed estimate. Both
the forward‐ and back‐smoothed results clearly identify in which box the transient is located and produce
estimates of the peak stressing rate of the transient that are within a factor of 2–3 of the actual peak.
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each box. This space‐time window allows us to obtain
enough earthquakes in each bin to resolve the background
rate. Any spatial binning scheme that obeys this criterion,
such as a fault‐based algorithm similar to those used in
stress inversions [e.g., Hardebeck and Hauksson, 1999],
would work and can be handled using the numerical inte-
gration technique described by Ogata [1998].

4.2. Parameter Estimation

[43] We first fit the space‐time ETAS model to the 2005
M5.1 Obsidian Buttes earthquake to account for as much of
the aftershock behavior as possible. From the space‐time
ETAS estimation algorithm [Ogata and Zhuang, 2006], the
MLE for the ETAS parameters are K = 0.53 events/day/deg2,
a = 0.92, p = 1.3, c = 0.01 days, d = 4.8e‐5 deg2, q = 2.63, and
h = 0.23. However, the data vector formed using these
parameters resulted in a number of negative seismicity rate
values primarily due to the estimate of p, which can lead to
instabilities in the filter due to the assumption of a Gaussian
error distribution. Therefore, we instead use the ordinary time

ETAS parameters (K = 0.61 events/day/deg2, a = 0.88, p =
1.1, and c = 0.001 days) fit to this catalog [Llenos et al., 2009].
[44] We subtract the ETAS‐predicted rate from the observed

seismicity rate to form the data vector and estimate the data
covariance Rk. Again because of the tradeoff between the
parameters t and As and our lack of sensitivity to As, we
fix As to 1 MPa. As the synthetic test demonstrates (see
section 3.1), uncertainties in the parameter As ultimately
translates into uncertainties in the stressing rate estimate.
Assuming that A = 0.01 from laboratory observations
[Dieterich, 1994], this value of As is consistent with faults
that fail under hydrostatic conditions at a depth of ∼4 km, the
depth at which the Obsidian Buttes swarm occurred [Chester
and Higgs, 1992; Blanpied et al., 1998; Lohman and
McGuire, 2007]. We then grid search over values of t and ".
Using the constraint that the integral of the filter estimate of
stressing rate must be consistent with the filter estimate of
g, we choose a value of t = 2.5e‐4 and maximize the
likelihood over values of " (Figure 7). The maximum
likelihood estimate occurs when " = 0.5 (Figure 7a) but
again, as in the synthetic test, at this value the data
covariancemultiplier �̂2 is significantly less than 1 (Figure 7b),
and the filter overfits the data. Our preferred value is " =
0.04, for which �̂2 ∼1, resulting in a better fit for the largest
peaks in the data.

4.3. Results

[45] Figure 8 shows the stressing rate estimates for each
box using " = 0.04, illustrating the filter’s ability to detect
when and in which box the largest transient in the region
occurs. The largest anomaly occurs in box 2 and is associated
with a geodetically observed shallow aseismic creep event on
the Obsidian Buttes fault that triggered an earthquake swarm
in 2005 [Lohman and McGuire, 2007]. The peak forward
estimate of stressing rate is 0.042 ± 0.004 MPa/day and the
back‐smoothed estimate is 0.022 ± 0.006 MPa/day, roughly
two orders of magnitude above tectonic loading.
[46] The second largest signal also occurred in box 2 and

corresponds to the Bombay Beach earthquake swarm that
occurred in March 2009. The swarm consisted of ∼100s of
events, the largest of which was a M4.8 that occurred three
days after the swarm initiated. We also identify small
anomalies in boxes 2 and 4 inMay 2003 that may be related to
an earthquake swarm that occurred in the Imperial fault zone
(located near the boundary of the two boxes) [Roland and
McGuire, 2009]. We can also associate smaller anomalies
in box 2 with earthquake swarms that occurred in the Brawley
seismic zone in 1996, 1998, and 2008 [Southern California
Earthquake Center, http://www.data.scec.org/monthly/index.
php]. While we cannot rule out the possibility of fluid flow
triggering these smaller swarms, other swarms in the Salton
Trough exhibit migration rates of 0.1–1 km/h which corre-
spond to typical rupture propagation velocities of aseismic
creep events [Roland and McGuire, 2009, and references
therein], rather than the rates of fractions of kilometers per
day associated with fluid flow [e.g.,Hainzl andOgata, 2005].

5. Discussion

[47] Our results highlight the need for a time‐dependent
background seismicity rate to account for variations in seis-

Figure 6. (a) Map of the Salton Trough region in California
showing M ≥ 1.5 seismicity occurring from February 1990
to August 2009, obtained from the Southern California
Earthquake Data Center. For our analysis, the region is
divided into the 4 boxes indicated. (b) Magnitude‐time
history of the Salton Trough catalog.
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Figure 7. (a) Log likelihood versus " for the Salton Trough data set. (b) Data covariance multiplier �̂2

versus ". Again the MLE of " (square) differs from our preferred value for " (star), for which �̂2 ∼1. As in
the synthetic test, the MLE value of " (0.5) overfits the data, while the preferred value of " (0.04) fits the
largest peaks better and results in closer agreement between the direct and integrated filter estimates of g.

Figure 8. Filter estimates of _S in each spatial box for the Salton Trough. The purple line indicates the
forward estimate, the black line indicates the back‐smoothed estimate. The largest signal, in box 2, cor-
responds to a geodetically observed aseismic transient in the Obsidian Buttes in 2005 [Lohman and
McGuire, 2007]. The next largest signal, also in box 2, relates to the 2009 Bombay Beach earthquake
swarm. Other smaller anomalies may be related to an earthquake swarm on the Imperial Fault in 2003
[Roland and McGuire, 2009] in boxes 2 and 4, earthquake swarms in the Brawley seismic zone in 1996,
1998, and 2008 in box 2, and the 2009 Bombay Beach swarm in box 2.
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micity rate due to aseismic processes, as other studies have
suggested [e.g.,Hainzl andOgata, 2005; Lombardi et al., 2006;
Lombardi and Marzocchi, 2007; Lombardi et al., 2010].
Figure 9 compares the observed cumulative number of events in
the Salton Trough catalog with the number of events predicted
from optimizing the space‐time ETAS model to the part of the
catalog that occurred prior to the 2005 Obsidian Buttes swarm,
and the number of events predicted from the filter estimate of
seismicity rate. We transform the occurrence times ti of the
events in the catalog with the theoretical cumulative function

ti =
Z ti

0
l(s)ds, where l is the predicted seismicity rate from

either ETAS or the filter [Ogata, 1988, 2005]. A plot of the
cumulative number of events versus transformed time should be
linear if the seismicity in the catalog is well described by a
particular model. The 2s error bars of the extrapolation can be
calculated using s = [t − L(0,T) + {t − L(0,T )}2/L(0,T)]1/2,
based on the fact that the cumulative curves of the transformed
times after L(0,T) (where L(0,T) is the transformed time of the
last event that occurred during the time period [0, T] over which
the ETAS model was optimized) should behave as a standard
Brownian process [Ogata, 2005]. Positive (or negative) devia-
tions from this linear trend indicate that the model underpredicts
(or overpredicts) the amount of seismicity. Figure 9 shows that
with the space‐time ETAS model, a significant positive devia-
tion from this trend occurs near the beginning of the Obsidian
Buttes swarm, suggesting that anomalous seismicity is occur-
ring that the ETAS model alone cannot explain. The filter pre-
diction howevermatches the observed seismicity well. Therefore,

the time‐dependent background seismicity rate produced by
our filter algorithm can account for the seismicity rate
anomalies that appear with respect to the space‐time ETAS
model, which utilizes a time‐independent background seis-
micity rate.
[48] To validate the estimates of _S obtained from these

seismicity rate variations, we compare our peak stressing
rate estimate for the 2005 Obsidian Buttes aseismic transient
to an estimate based on a slip model of the deformation
inverted from Interferometric Synthetic Aperture Radar
(InSAR) data [Lohman and McGuire, 2007]. The seismicity
triggered by this transient occurred primarily in the depth
range of 4–6 km. We calculate the Coulomb stress change
[King et al., 1994; Lin and Stein, 2004; Toda et al., 2005] at
this depth range due to the aseismic slip on the shallow part
of the fault and obtain an average total Coulomb stress
change of 0.6 MPa (Figure 10). Based on GPS line length
change data, the transient lasted ∼1–10 days [Lohman and
McGuire, 2007]. Given this range of durations, the aver-
age stressing rate during the transient then becomes ∼0.06–
0.6 MPa/day. For a duration of 5 days (which appears to
best describe the GPS data), the average stressing rate is
0.12 MPa/day.
[49] We compare this average stressing rate to our peak

stressing rate estimates for the transient. We obtained a peak
stressing rate of ∼0.04 MPa/day from the forward filter
estimate and a peak stressing rate of ∼0.02 MPa/day from
the back‐smoothed estimate (Figure 8). Thus, the results
from inverting the seismicity catalog are within a factor of 5

Figure 9. Cumulative number of events versus transformed time (i.e., predicted cumulative number of
events). The red line is a one‐to‐one line indicating a perfect fit to the observed data. ETAS transformed
times are calculated with seismicity rates estimated from the space‐time ETAS model optimized to just
prior to the 2005 Obsidian Buttes earthquake swarm (event 3779) and extrapolated for the remainder
of the catalog (blue line). Transformed times are also calculated using the filter estimate of seismicity rate
(black line). The significant deviation of the blue line from the data (red line; 2s bounds shown by gray
line) shows that the ETAS model (with a time‐independent background rate) underpredicts the amount of
seismicity, particularly during the 2005 swarm. The filter estimate (with a time‐dependent background
rate) provides a better fit to the observed cumulative number of events.
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of the average stressing rate estimated from the geodetic
data. Moreover, if we take the duration of the transient to
match the time step in our filter (20 days) then the estimates
agree extremely well (0.03 MPa/day from the stress calcu-
lation versus 0.02–0.04 MPa/day from the filter). Given that
stressing rate increases are likely to be many orders of
magnitude over background plate tectonic rates [Thatcher,
2001; Toda et al., 2002; Lohman and McGuire, 2007], the
Salton Trough example demonstrates the feasibility of uti-
lizing our approach to both detect and constrain the mag-
nitude of stressing rate transients.
[50] The second largest anomaly in the filter stressing rate

estimate (Figure 8) is related to the 2009 Bombay Beach
earthquake swarm, which began on 21 March 2009 and
lasted ∼1 week. The largest event was a M4.8 that occurred
on 24 March 2009, three days after the swarm began. The
swarm occurred on the northernmost part of a series of

ladder faults offshore of Bombay Beach (Figure 11a).
Geodetic data are limited because of the fault’s offshore
location, but the nearest GPS station (DHLG) observed an
offset at the time of the swarm. We fit daily GPS solutions
from the routine Plate Boundary Observatory analyses and
found a 1.0 mm offset in the east component and a −0.8 mm
offset in the north component, relative to station P504
(Figures 11b and 11c). To determine if the signal can be
explained by the earthquake swarm or if it requires an
aseismic deformation event, we constructed a simple con-
servative forward model of the ground deformation due to
the swarm. Summing the seismic moment released during
the swarm, we calculated an average focal mechanism and
placed it on the northernmost ladder fault. We estimated a
rupture length and width from the moment release using
empirical scaling relations [Wells and Coppersmith, 1994]
and assumed a shear modulus of 25 GPa. From this forward
model, we obtained offsets of −0.1 mm in the east component
and −0.2 mm in the north component. Our modeled dis-
placements are factors of 10 (east component) and 4 (north
component) smaller than the observed, which allows for
the possibility that aseismic deformation occurred. However,
the GPS data are not conclusive, and deformation was
not observed in the laser strainmeter data at Durmid Hills
(D. Agnew, personal communication, 2010).
[51] In the rate‐state model, stressing rate estimates depend

to an extent on the value of As, because this parameter con-
trols both the instantaneous change in seismicity rate fol-
lowing a stress change as well as the evolution of the state
variable g [Catalli et al., 2008; Llenos et al., 2009; Cocco
et al., 2010]. However, as both the synthetic test and data
analysis demonstrate, our method is relatively insensitive to
variations in this parameter. For the synthetic test, varying
As by a factor of 10 led to a change in the peak stressing rate
estimate of a factor of 2. For the Salton Trough, varying this
parameter by a factor of 10 led to a change in the peak
stressing rate estimate of a factor of ∼4. Therefore, our
method can still be used to constrain relative changes in
stressing rate on an order‐of‐magnitude scale.
[52] Because of our lack of sensitivity to the actual value

of As, we utilized a physically motivated value in our Salton
Trough analysis. This approach was successfully applied to
detect stress changes due to a dike intrusion at Kilauea
[Dieterich et al., 2000]. Using a value of As consistent with
hydrostatic fault conditions at the depth at which the trig-
gered seismicity occurred, Dieterich et al. [2000] obtained
estimates of stress changes from the seismicity data that
agreed with the stress changes calculated from geodetically
constrained boundary element models within an order of
magnitude. Similarly, we do not attempt to constrain the true
value of As and instead choose a value consistent with
local conditions, because we are primarily concerned with
detecting order‐of‐magnitude changes in stressing rate. Our
results and subsequent validation with a geodetically
derived model of deformation suggest that our method is
successfully able to do so.
[53] Last, it is possible that the peaks in seismicity rate

observed in box 2 are artifacts due to undetected seismicity.
The ETAS estimate of background seismicity may be over-
estimated, particularly following large events, due to the

Figure 10. (a) Slip model of shallow aseismic creep on the
Obsidian Buttes fault inverted from InSAR data [Lohman and
McGuire, 2007]. Black box indicates depth at which micro-
seismicity triggered by the transient occurred. (b) Calculated
Coulomb stress change on the fault due to the shallow
aseismic slip. The Coulomb stress change averaged over the
outlined boxes is used to calculate an average stressing rate
for the transient (∼0.06–0.6 MPa/day for transient durations
of 1–10 days).
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effect of seismicity below the magnitude cutoff triggering
larger events above the cutoff [Sornette and Werner, 2005].
However, in this case the two largest spikes that we find
correspond to transient signals that were also observed on
GPS (i.e., the 2005 Obsidian Buttes transient and the 2009
Bombay Beach transient). Moreover, geodetically observed
transients in other regions such as Kilauea and Boso have
been shown to trigger significant changes in the ETAS‐
estimated background seismicity rate [Llenos et al., 2009].
Finally, Lombardi et al. [2010] recently used simulated cat-
alogs to demonstrate that a bias from undetected seismicity
could not explain the changes in background seismicity rate
observed during the 1997 Umbria‐Marche earthquake sequence,
which they attribute to fluid flow. Therefore, while it is
possible that undetected events may cause apparent spikes
in background seismicity rate, it is likely that the largest
signals we detect are real variations, particularly since they
correlate with GPS‐detected transients.

6. Conclusion

[54] We have developed a technique to detect aseismic
transients in time and space from earthquake catalog data by
combining the ETAS and rate‐state models of seismicity rate
into a single data assimilation algorithm to invert catalogs for

stressing rate variations. We applied it to a synthetic test and
successfully detected an aseismic transient that involved a
factor of 10 increase in stressing rate. We then applied it to a
catalog from the Salton Trough in California, and success-
fully detected the onset and constrained the absolute magni-
tude of the largest aseismic transient in a 20 year catalog to
within a factor of five of the stressing rate estimated with
geodetic data. We also detected an anomaly related to the
2009 Bombay Beach swarm occurring around the same time
as an offset observed at a nearby GPS station, suggesting that
aseismic deformation may have occurred.
[55] Overall, the synthetic test and Salton Trough results

suggest that our algorithm is a feasible way to detect
aseismic stressing rate transients strictly from seismicity
catalog data. This method may ultimately enable aseismic
transient detection in regions lacking good geodetic data
resolution, such as the (offshore) updip part of subduction
zone faults, and in time periods prior to the widespread
availability of geodetic data. Additionally, a seismicity
based approach may be more sensitive to small (M4–5) and/
or shallow slow‐slip transients that are not detected by even
dense geodetic networks such as the Plate Boundary
Observatory [Wei et al., 2009]. The results suggest that our
seismicity inversion method provides an accurate way to
detect and locate transient deformation strictly from seis-

Figure 11. (a) Map of the Bombay Beach region showing M ≥ 1.5 seismicity during the swarm (gray
dots). Vectors indicate the observed (black) and modeled (white) displacement at station DHLG relative
to station P504. Displacements were modeled assuming the total moment release of the swarm occurred
on the northernmost ladder fault. The focal mechanism of the M4.8 event is also shown. (b) Eastward
component of displacement at DHLG relative to P504, observed from daily GPS solutions from PBO
analyses (black dots). Linear trend (red line) obtained by fitting the time periods before and after the
swarm. An offset of ∼1mm occurs around the time of the swarm. (c) North component of displacement
at DHLG relative to P504 (black dots), with linear trend (red line) fit to before and after the swarm. An
offset of 0.8mm to the south occurs around the time of the swarm.
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micity catalogs and can constrain the absolute magnitude of
stressing rate variations.

Appendix A: State‐Space Model Specification

[56] This appendix details the state‐space system used in
our algorithm to invert for stressing rate variations. Our state‐
space model consists of an observation equation:

dk ¼ hk xkð Þ þ !k ; !k � N 0;Rkð Þ ðA1Þ

and a state transition equation:

xkþ1 ¼ t xkð Þ þ 	kþ1; 	kþ1 � N 0;Qkþ1ð Þ ðA2Þ

The observations d are the aseismically triggered seismicity
rates RA in each spatial bin (i.e., the observed seismicity rates R

with the ETAS‐predicted Omori sequences removed), and the
state variables xk consist of long‐term tectonic loading rate _Sp,
aseismic stressing rate _SA, and the logarithm of the rate‐state
seismicity state variable g in each of N spatial boxes. Thus the
full state vector is:

xk ¼ _S1pk ;
_S1Ak

; ln �1k ; _S
2
pk
; _S2Ak

; ln �2k ; :::
h

; _SNpk ;
_SNAk

; ln �Nk

i
ðA3Þ

The N × 3N measurement matrix h, relating the observed
seismicity rates to the underlying state variables, is nonlinear,
and formed with the rate‐state model (equation (5)):

h xkð Þ ¼
0 0

r

�1k
_Sr


 �
0

0 . .
.

2
664

3
775

¼

0 0
r

�1k
_Sr


 �
0 0

0 . .
.

0

0 0 0 0
r

�Nk
_Sr


 �

2
6666664

3
7777775

ðA4Þ

It is then linearized to form thematrixH used in the update step
of the extended Kalman filter (equations (14)–(15)) by taking
partial derivatives around xk:

Hk ¼ @h xð Þ
@x

����
xk

¼
0 0

�r

�1k
_Sr


 �
0

0 . .
.

2
64

3
75 ðA5Þ

The elements of the 3N× 3N state transitionmatrix t are formed
from the rate‐state evolution equation for g (equation (6)):

t xkð Þ ¼

_S1pk 0 0

0 _S1Ak
0

0 0 ln �1k þ
dt

A�
1� �1k

_S1pk þ _S1Ak

� �� �� �
2
6664

3
7775 0 � � �

0 . .
.

0

..

.
0

_SNpk 0 0

0 _SNAk
0

0 0 ln �Nk þ dt

A�
1� �Nk

_SNpk þ _SNAk

� �� �� �
2
6664

3
7775

2
6666666666666664

3
7777777777777775

It is then linearized to form the matrix T used in the prediction
step of the extended Kalman filter (equation (13)) by taking
partial derivatives with respect to the state variables at time k in
each spatial cell:

Tk ¼ @t xð Þ
@x

����
xk

¼

1 0 0
0 1 0

� dt

A�
�1k

dt

A�
þ �1k 1� dt

A�
_S1pk þ _S1Ak

� �� � � dt

A�
�1k

dt

A�
þ �1k 1� dt

A�
_S1pk þ _S1Ak

� �� � �1k 1� dt

A�
_S1pk þ _S1Ak

� �� �
dt

A�
þ �1k 1� dt

A�
_S1pk þ _S1Ak

� �� �

2
6666664

3
7777775

0

0 . .
.

2
6666666664

3
7777777775

We assume the measurement and process noises wk and dk+1
(equation (A1)) are Gaussian and described by the data and
process covariance matrices Rk and Qk+1 respectively. The
data covariance matrix Rk is assumed to be known only up to
a scalar multiplier x2, such that Rk = x2Sk, where Sk is a
matrix that contains any known correlations between the spa-
tial cells and components [Segall and Matthews, 1997]. In our
case, we assume x2 ∼1 and estimate Sk a priori based on the
variance of the data vector during stable time periods.
[57] The elements of the 3N × 3N process covariance

matrix Qk+1 are determined by the properties of the random
walks used to model the state variables _SA and ln(g):

Qkþ1 ¼
0 0 0
0 
2Dt 0
0 0 "2Dt

2
4

3
5 0

0 . .
.

2
6664

3
7775 ðA8Þ

where t and " are the scale parameters for the random walks
that model _SA and ln(g) respectively.

(A6)

(A7)
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