1,789 research outputs found

    Analytical theory for proton correlations in common water ice IhI_h

    Full text link
    We provide a fully analytical microscopic theory for the proton correlations in water ice IhI_h. We compute the full diffuse elastic neutron scattering structure factor, which we find to be in excellent quantitative agreement with Monte Carlo simulations. It is also in remarkable qualitative agreement with experiment, in the absence of any fitting parameters. Our theory thus provides a tractable analytical starting point to account for more delicate features of the proton correlations in water ice. In addition, it directly determines an effective field theory of water ice as a topological phase.Comment: 5 pages, 3 figure

    Surface Impedance Determination via Numerical Resolution of the Inverse Helmholtz Problem

    Full text link
    Assigning boundary conditions, such as acoustic impedance, to the frequency domain thermoviscous wave equations (TWE), derived from the linearized Navier-Stokes equations (LNSE) poses a Helmholtz problem, solution to which yields a discrete set of complex eigenfunctions and eigenvalue pairs. The proposed method -- the inverse Helmholtz solver (iHS) -- reverses such procedure by returning the value of acoustic impedance at one or more unknown impedance boundaries (IBs) of a given domain, via spatial integration of the TWE for a given real-valued frequency with assigned conditions on other boundaries. The iHS procedure is applied to a second-order spatial discretization of the TWEs on an unstructured staggered grid arrangement. Only the momentum equation is extended to the center of each IB face where pressure and velocity components are co-located and treated as unknowns. The iHS is finally closed via assignment of the surface gradient of pressure phase over the IBs, corresponding to assigning the shape of the acoustic waveform at the IB. The iHS procedure can be carried out independently for different frequencies, making it embarrassingly parallel, and able to return the complete broadband complex impedance distribution at the IBs in any desired frequency range to arbitrary numerical precision. The iHS approach is first validated against Rott's theory for viscous rectangular and circular ducts. The impedance of a toy porous cavity with a complex geometry is then reconstructed and validated with companion fully compressible unstructured Navier-Stokes simulations resolving the cavity geometry. Verification against one-dimensional impedance test tube calculations based on time-domain impedance boundary conditions (TDIBC) is also carried out. Finally, results from a preliminary analysis of a thermoacoustically unstable cavity are presented.Comment: As submitted to AIAA Aviation 201

    On the isospin dependence of the mean spin-orbit field in nuclei

    Get PDF
    By the use of the latest experimental data on the spectra of 133^{133}Sb and 131^{131}Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure

    Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid

    Full text link
    The Landau paradigm of classifying phases by broken symmetries was demonstrated to be incomplete when it was realized that different quantum Hall states could only be distinguished by more subtle, topological properties. Today, the role of topology as an underlying description of order has branched out to include topological band insulators, and certain featureless gapped Mott insulators with a topological degeneracy in the groundstate wavefunction. Despite intense focus, very few candidates for these topologically ordered "spin liquids" exist. The main difficulty in finding systems that harbour spin liquid states is the very fact that they violate the Landau paradigm, making conventional order parameters non-existent. Here, we uncover a spin liquid phase in a Bose-Hubbard model on the kagome lattice, and measure its topological order directly via the topological entanglement entropy. This is the first smoking-gun demonstration of a non-trivial spin liquid, identified through its entanglement entropy as a gapped groundstate with emergent Z2 gauge symmetry.Comment: 4+ pages, 3 figure

    Conductance and Shot Noise for Particles with Exclusion Statistics

    Full text link
    The first quantized Landauer approach to conductance and noise is generalized to particles obeying exclusion statistics. We derive an explicit formula for the crossover between the shot and thermal noise limits and argue that such a crossover can be used to determine experimentally whether charge carriers in FQHE devices obey exclusion statistics.Comment: 4 pages, revtex, 1 eps figure include

    Rigorous Analysis of Singularities and Absence of Analytic Continuation at First Order Phase Transition Points in Lattice Spin Models

    Get PDF
    We report about two new rigorous results on the non-analytic properties of thermodynamic potentials at first order phase transition. The first one is valid for lattice models (d≥2d\geq 2) with arbitrary finite state space, and finite-range interactions which have two ground states. Under the only assumption that the Peierls Condition is satisfied for the ground states and that the temperature is sufficiently low, we prove that the pressure has no analytic continuation at the first order phase transition point. The second result concerns Ising spins with Kac potentials Jγ(x)=γdϕ(γx)J_\gamma(x)=\gamma^d\phi(\gamma x), where 0<γ<10<\gamma<1 is a small scaling parameter, and ϕ\phi a fixed finite range potential. In this framework, we relate the non-analytic behaviour of the pressure at the transition point to the range of interaction, which equals γ−1\gamma^{-1}. Our analysis exhibits a crossover between the non-analytic behaviour of finite range models (γ>0\gamma>0) and analyticity in the mean field limit (γ↘0\gamma\searrow 0). In general, the basic mechanism responsible for the appearance of a singularity blocking the analytic continuation is that arbitrarily large droplets of the other phase become stable at the transition point.Comment: 4 pages, 2 figure

    Spin ice in a field: quasi-phases and pseudo-transitions

    Full text link
    Thermodynamics of the short-range model of spin ice magnets in a field is considered in the Bethe - Peierls approximation. The results obtained for [111], [100] and [011] fields agrees reasonably well with the existing Monte-Carlo simulations and some experiments. In this approximation all extremely sharp field-induced anomalies are described by the analytical functions of temperature and applied field. In spite of the absence of true phase transitions the analysis of the entropy and specific heat reliefs over H-T plane allows to discern the "pseudo-phases" with specific character of spin fluctuations and define the lines of more or less sharp "pseudo-transitions" between them.Comment: 18 pages, 16 figure
    • …
    corecore