359 research outputs found

    Intramolecular locking and coumarin insertion: a stepwise approach for TADF design

    Get PDF
    Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of Qx-Ph-DMAC to increase the conjugation length, resulting in BQx-Ph-DMAC, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording ChromPy-Ph-DMAC with red-shifted emission. Finally, the conjugated system is further enlarged by ‘locking’ the molecular structure, generating DBChromQx-DMAC with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet–triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial Qx-Ph-DMAC structure. ‘Locking’ the molecular structure further lowers the singlet–triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission

    Resonance Raman studies of Rieske-type proteins

    Full text link
    Resonance Raman (RR) spectra are reported for the [2Fe-2S] Rieske protein from Thermus thermophilus (TRP) and phthalate dioxygenase from Pseudomonas cepacia (PDO) as a function of pH and excitation wavelength. Depolarization ratio measurements are presented for the RR spectra of spinach ferredoxin (SFD), TRP, and PDO at 74 K. By comparison with previously published RR spectra of SFD, we suggest reasonable assignments for the spectra of TRP and PDO. The spectra of PDO exhibit virtually no pH dependence, while significant changes are observed in TRP spectra upon raising the pH from 7.3 to 10.1. One band near 270 cm-1, which consists of components at 266 cm-1 and 274 cm-1, is attributed to Fe(III)-N(His) stretching motions. We suggest that these two components arise from conformers having a protonated-hydrogen-bonded imidazole (266 cm-1) and deprotonated-hydrogen-bonded imidazolate (274 cm-1) coordinated to the Fe/S cluster and that the relative populations of the two species are pH-dependent; a simple structural model is proposed to account for this behavior in the respiratory-type Rieske proteins. In addition, we have identified RR peaks associated with the bridging and terminal sulfur atoms of the Fe-S-N cluster. The RR excitation profiles of peaks associated with these atoms are indistinguishable from each other in TRP (pH 7.3) and PDO and differ greatly from those of [2Fe-2S] ferredoxins. The profiles are bimodal with maxima near 490 nm and > approx. 550 nm. By contrast, bands associated with the Fe-N stretch show a somewhat different enhancement profile. Upon reduction, RR peaks assigned to Fe-N vibrations are no longer observed, with the resulting spectrum being remarkably similar to that reported for reduced adrenodoxin. This indicates that only modes associated with Fe-S bonds are observed and supports the idea that the reducing electron resides on the iron atom coordinated to the two histidine residues. Taken as a whole, the data are consistent with an St2FeSb2Fe[N(His)]t2 structure for the Rieske-type cluster.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29687/1/0000014.pd

    New Results on the SymSum Distinguisher on Round-Reduced SHA3

    Get PDF
    In ToSC 2017 Saha et al. demonstrated an interesting property of SHA3 based on higher-order vectorial derivatives which led to self-symmetry based distinguishers referred to as SymSum and bettered the complexity w.r.t the well-studied ZeroSum distinguisher by a factor of 4. This work attempts to take a fresh look at this distinguisher in the light of the linearization technique developed by Guo et al. in Asiacrypt 2016. It is observed that the efficiency of SymSum against ZeroSum drops from 4 to 2 for any number of rounds linearized. This is supported by theoretical proofs. SymSum augmented with linearization can penetrate up to two more rounds as against the classical version. In addition to that, one more round is extended by inversion technique on the final hash values. The combined approach leads to distinguishers up to 9 rounds of SHA3 variants with a complexity of only 264 which is better than the equivalent ZeroSum distinguisher by the factor of 2. To the best of our knowledge this is the best distinguisher available on this many rounds of SHA3

    Engineering the Redox Potential over a Wide Range within a New Class of FeS Proteins

    Get PDF
    Abstract: MitoNEET is a newly discovered mitochondrial protein and a target of the TZD class of antidiabetes drugs. MitoNEET is homodimeric with each protomer binding a [2Fe-2S] center through a rare 3-Cys and 1-His coordination geometry. Both the fold and the coordination of the [2Fe-2S] centers suggest that it could have novel properties compared to other known [2Fe-2S] proteins. We tested the robustness of mitoNEET to mutation and the range over which the redox potential (EM) could be tuned. We found that the protein could tolerate an array of mutations that modified the EM of the [2Fe-2S] center over a range of ∼700 mV, which is the largest EM range engineered in an FeS protein and, importantly, spans the cellular redox range (+200 to-300 mV). These properties make mitoNEET potentially useful for both physiological studies and industrial applications as a stable, water-soluble, redox agent

    Influence of Matrix Polarity on the Properties of Ethylene Vinyl Acetate–Carbon Nanofiller Nanocomposites

    Get PDF
    A series of ethylene vinyl acetate (EVA) nanocomposites using four kinds of EVA with 40, 50, 60, and 70 wt% vinyl acetate (VA) contents and three different carbon-based nanofillers—expanded graphite (EG), multi-walled carbon nanotube (MWCNT), and carbon nanofiber (CNF) have been prepared via solution blending. The influence of the matrix polarity and the nature of nanofillers on the morphology and properties of EVA nanocomposites have been investigated. It is observed that the sample with lowest vinyl acetate content exhibits highest mechanical properties. However, the enhancement in mechanical properties with the incorporation of various nanofillers is the highest for EVA with high VA content. This trend has been followed in both dynamic mechanical properties and thermal conductivity of the nanocomposites. EVA copolymer undergoes a transition from partial to complete amorphousness between 40 and 50 wt% VA content, and this changes the dispersion of the nanofillers. The high VA-containing polymers show more affinity toward fillers due to the large free volume available and allow easy dispersion of nanofillers in the amorphous rubbery phase, as confirmed from the morphological studies. The thermal stability of the nanocomposites is also influenced by the type of nanofiller

    Structural studies of thermally stable, combustion-resistant polymer composites

    Get PDF
    Composites of the industrially important polymer, poly(methyl methacrylate) (PMMA), were prepared by free-radical polymerization of MMA with varying amounts (1–30 wt. %) of sodium dioctylsulfosuccinate (Aerosol OT or AOT) surfactant added to the reaction mixture. The composites with AOT incorporated show enhanced resistance to thermal degradation compared to pure PMMA homopolymer, and micro-cone combustion calorimetry measurements also show that the composites are combustion-resistant. The physical properties of the polymers, particularly at low concentrations of surfactant, are not significantly modified by the incorporation of AOT, whereas the degradation is modified considerably for even the smallest concentration of AOT (1 wt. %). Structural analyses over very different lengthscales were performed. X-ray scattering was used to determine nm-scale structure, and scanning electron microscopy was used to determine μm-scale structure. Two self-assembled species were observed: large phase-separated regions of AOT using electron microscopy and regions of hexagonally packed rods of AOT using X-ray scattering. Therefore, the combustion resistance is observed whenever AOT self-assembles. These results demonstrate a promising method of physically incorporating a small organic molecule to obtain a highly thermally stable and combustion-resistant material without significantly changing the properties of the polymer

    Reorganization Energy for Internal Electron Transfer in Multicopper Oxidases.

    Get PDF
    We have calculated the reorganization energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copper sites. We obtain a reorganization energy of 91-133 kJ/mol, depending on the theoretical treatment. The two Cu sites contribute by 12 and 22 kJ/mol to this energy, whereas the solvent contribution is 34 kJ/mol. The rest comes from the protein, involving small contributions from many residues. We have also estimated the energy difference between the two electron-transfer states and show that the reduction of the peroxy intermediate is exergonic by 43-87 kJ/mol, depending on the theoretical method. Both the solvent and the protein contribute to this energy difference, especially charged residues close to the two Cu sites. We compare these estimates with energies obtained from QM/MM optimizations and QM calculations in a vacuum and discuss differences between the results obtained at various levels of theory
    • …
    corecore